

This work was partially supported by the SCAPE Project. The SCAPE project is co-funded by the
European Union under FP7 ICT-2009.4.1 (Grant Agreement number 270137).
This work is licensed under a CC-BY-SA International License

Design and implementation
of the preservation

component catalogue

Authors
Donal Fellows (University of Manchester), Markus Plangg (University of Technology Berlin)

May 2014

http://creativecommons.org/licenses/by-sa/4.0/

iii

Executive Summary
This deliverable consists of the updated myExperiment service, the published SCAPE ontology, and
two supporting tools. The update to myExperiment makes it able to work as a component repository,
the SCAPE ontology defines the semantic annotation terms that are used in the component profiles
on myExperiment, and the tools make it easier to determine the “correctness” of a component and
to create and edit a component profile.

The Component Repository is at:
 http://www.myexperiment.org/

The SCAPE Ontology is at:
 http://purl.org/DP/components/1.0

The SCAPE Component Profiles are (in un-deployed form) at:
 https://github.com/openplanets/scape-component-profiles

The supporting tools are at:
 https://github.com/myGrid/component-validator
 https://github.com/myGrid/component-profile-creator

http://www.myexperiment.org/
http://purl.org/DP/components/1.0
https://github.com/openplanets/scape-component-profiles
https://github.com/myGrid/component-validator
https://github.com/myGrid/component-profile-creator

iv

Table of Contents

Executive Summary ... iii

1 Introduction .. 1

1.1 Taverna Components Abstract Model .. 1

2 Component Registry ... 2

2.1 User Interface .. 2

2.2 Configuration of myExperiment to Support SCAPE .. 4

2.3 Application Programming Interface .. 4

2.3.1 API for Components .. 5

2.3.2 API for Component Families ... 7

2.3.3 API for Component Profiles .. 9

3 SCAPE Component Ontology ... 10

3.1 Workflow-level annotations .. 11

3.2 Port-level annotations ... 11

3.3 Internal annotations .. 11

3.4 The SCAPE component profiles ... 12

4 Supporting Tools ... 12

4.1 Component Validator Library .. 12

4.2 Component Profile Editor ... 14

5 Glossary .. 15

1

1 Introduction
The SCAPE project uses Taverna as its workflow system of choice. Workflows in Taverna can be split
up into pieces — sub-workflows — that can be shared via the myExperiment workflow repository
service. However, these sub-workflows do not hide any information about their nature; they remain
relatively difficult to use. They were also comparatively difficult to search for, and the API for doing
so was difficult for any tool other than Taverna to use, especially where that tool was not just a
simple user interface.

To resolve this, we have designed the Taverna Component concept, which is a semantically
annotated sub-workflow that can be placed in a containing workflow without exposing the details of
its implementation. To ease discovery of components, they are grouped into families of related
components that share a common principle (e.g. migration actions suitable for application to a web
archive). Each family encodes part of its nature as a profile, which is a document that describes the
interface of the component, what annotations (including semantic annotations drawn from any
ontology that it nominates) it may have, and how to transform any errors generated within the
component into syntax that the users of the component can understand.

However, merely having the component concept is insufficient. We also require that components be
discoverable and shareable in reality. We therefore have extended the myExperiment workflow
repository with the capability to be a component repository as well. This allows users to find
components by three mechanisms: general search within myExperiment, exploration of the
component service panel in the Taverna Workbench, and semantic search via the repository API. It
also leverages the existing sharing platform of myExperiment, and allows for the presentation of
additional information not normally required (e.g. the assessment of the validity of a component
against its profile).

We also define an ontology specifically for the components used in the SCAPE project, together with
tools for the validation of components against their profile, and for creating and updating a profile.

1.1 Taverna Components Abstract Model
Components in Taverna follow an abstract model as set out in Figure 1 (blue blocks, and the registry
in green, are part of the component interface; red blocks are realizations in Taverna, and orange
blocks relate to semantic annotations).

Components are versioned entities that can be used in a Taverna Workflow. These components are
aggregated into component families for the purposes of discovery and organization. Each component
family also references a component profile that its member components should conform to. The
profile defines what annotations should be present, what ontologies may supply those annotations,
how many input and output ports there should be, etc. The components, component families and
component profiles are all stored in a component repository; that component repository is
responsible for providing operations over these entities (e.g. lookup, semantic search).

A version of a component is realized by a Taverna Workflow, with including a component in a
workflow being conceptually similar to placing a sub-workflow in that consuming workflow. The
annotations are placed on the workflow that defines the component, on the ports of that workflow,
and possibly also on the activities (processing nodes) in the workflow.

2

The publicly accessible realization of the component repository concept is myExperiment.

Figure 1: Abstract Model of Taverna Components Ecosystem

2 Component Registry
The SCAPE project uses myExperiment (http://www.myexperiment.org/) as its component repository
as it provided a substantial fraction of the desired functionality with only minimal changes, allowing a
more professional component repository to be delivered. However, becoming a component
repository as well as a workflow repository has entailed some alterations to myExperiment. This
section highlights the key ones.

Note that all the changes described here are present in our production deployment, and are in use in
projects1 outside SCAPE. However, the SCAPE project is the most extensive known user of semantic
annotations in components; the other users currently tend to leave their semantics implicit.

2.1 User Interface
We have added SCAPE project styling (see Figure 2) to items (workflows, components, files, packs,
etc.) that are shared with the SCAPE user group on myExperiment. This styling is not enabled by
default, but can be added via the user’s management view for the item.

1 Notably the BioVeL project, grant agreement #283359, https://www.biovel.eu/. They have focused much
more on the hardening of the GUI for components in the Taverna Workbench, testing of the generation of
provenance out of components, plus a feature for remapping of exceptions from inferior processors (that
feature is unused in SCAPE).

http://www.myexperiment.org/
https://www.biovel.eu/

3

The user interface to myExperiment has had relatively few changes to adapt to components, as they
fit relatively closely with the existing models of workflows, packs and files (which components,
families and profiles can be regarded as being specializations of). It should be noted that while it is
possible to create components that are in the repository but not shared with other users, this is not
recommended at all because it completely prevents reuse.

Figure 2: myExperiment Component View from http://www.myexperiment.org/workflows/3498.html

The main interface change (apart from now declaring component profiles to be such) is that we now
include an extra side panel for components, the “Component Validity”, which shows how closely the
component conforms to its profile (formally, to the profile of the primary component family that
contains the component). It uses a “traffic light” bar to indicate how well the profile is satisfied,
where green indicates total satisfaction of a condition, red indicates total failure to satisfy a
condition, and yellow indicates technical satisfaction, but in a way that the user is highly unlikely to
expect (i.e., the validation issues a warning, for example, when a mentioned semantic annotation is
required to be present on all ports but there are no ports at all). The summary figure above it
indicates the total of the full satisfaction and warning states as a proportion of the total.

Clicking on the “Show breakdown” link causes the side panel to expand to include explanatory text
showing why the assessment is what it is (see Figure 3).

http://www.myexperiment.org/workflows/3498.html

4

Figure 3: The Expanded Component Validity Box from http://www.myexperiment.org/workflows/3498.html

By policy, failure to conform to a profile does not prevent the use of the component; it formally
merely constitutes the opinion of the myExperiment service on how well the profile is satisfied.

Although there is a semantic search capability in the API (see Section 2.3.1), we do not surface this to
the user interface as our user testing indicated that the complexity of writing search terms exceeded
what we could expect a reasonable user to use.

2.2 Configuration of myExperiment to Support SCAPE
We have performed a number of adaptations to myExperiment to support SCAPE. In particular, we
have a user group for the project (“SCAPE”, http://www.myexperiment.org/groups/490.html) and we
support the branding of an artefact with the SCAPE logo and colour palette (provided the item is
shared with the SCAPE group). The branding can be seen in Figure 2.

We have a number of component families and component profiles provided for the SCAPE project.
We provide a component profile for each of the major tasks performed by SCAPE components
(Content Migration, Characterisation and Quality Assurance) and component families that use those
profiles in each of the thematic areas (Audio/Video, Documents, Images, Scientific Data and
Webpages). These component families are also the set that are exposed by default in the Taverna
Workbench 2.5 for Digital Preservation. The components within these families are defined and
provided by the Preservation Components subproject workpackages.

2.3 Application Programming Interface
We have also extended the REST interface to myExperiment with additional operations to make
working with components from programs easier. The majority of this API is used within the Taverna

http://www.myexperiment.org/workflows/3498.html
http://www.myexperiment.org/groups/490.html

5

Workbench to access and manipulate components within the repository, and it is substantially more
efficient than the older workflow and pack APIs that it replaces.

This new API is also documented on the myExperiment Developer site at
http://wiki.myexperiment.org/index.php/Developer:Components; all main URLs are with respect to
the root URL of the repository.

Note that all the APIs below can be used either with or without authentication. Where a query API
(GET) is used without authentication, only public information is returned. Where a modification API
(PUT, POST, DELETE) is used without authentication, it will always be rejected. Authentication is
done via HTTP Basic Authentication headers.

2.3.1 API for Components
It can be seen that the URLs of components contain an ID; this ID is shared between components and
workflows, as components are subclasses of workflows.

Discovery of components

GET /components.xml
Fetches the list of all components that the user may see (i.e., publicly viewable components,
components that they own, and those that they have been granted elevated access to).

Example of response (truncated):

<workflows>
 <workflow id="3417" version="2"
 resource="http://www.myexperiment.org/workflows/3417"
 uri="http://www.myexperiment.org/workflow.xml?id=3417">
 Migration Imagemagick convert no compression
 </workflow>
 <workflow id="3364" version="1"
 resource="http://www.myexperiment.org/workflows/3364"
 uri="http://www.myexperiment.org/workflow.xml?id=3364">
 Migration ffmpeg audio to wav pcm_s32le
 </workflow>
</workflows>

GET /components.xml?component-family={uri}
Fetches the list of components that are a member of the given family and that the user may
see. The {uri} parameter must be a fully qualified pack URI of a family in the same
repository, for example http://www.myexperiment.org/packs/123. Note that
this effectively acts as a filter on the results of fetching all components.

GET /components.xml?query={qry}&prefixes={pfx}
Fetches the list of components that satisfy the given SPARQL2 query (the {qry} parameter).
The {pfx} parameter is used to specify the URI prefixes used in the query. The repository
processes the query by using the parameters in the template below, and then evaluating the
resulting SPARQL query against a read-only view of an RDF model of the space of workflows.

2 Pérez, Jorge, Marcelo Arenas, and Claudio Gutierrez. “Semantics and Complexity of SPARQL.” The Semantic
Web-ISWC 2006. Springer Berlin Heidelberg, 2006. 30-43.

http://wiki.myexperiment.org/index.php/Developer:Components

6

The repository filters the resulting list of workflow URIs by what the current user has
permission to see.

PREFIX rdfs:<http://www.w3.org/2000/01/rdf-schema#>
PREFIX wfdesc:<http://purl.org/wf4ever/wfdesc#>
[SPARQL {pfx} parameter here]

SELECT DISTINCT ?workflow_uri WHERE {
 GRAPH ?workflow_uri {
 ?w a wfdesc:Workflow .
 [SPARQL {qry} parameter here]
 }
}

GET /components.xml?query={qry}&prefixes={pfx}&component-family={uri}
Performs a SPARQL search (as above) and filters the result for membership of the given
component family. This is the composition of the above two query styles.

Fetching the metadata for a component
GET /component.xml?id={id}&elements={elems}
Fetches the description of the component with ID {id}. The optional {elems} parameter
is a comma-separated list of what fields to fetch; the most typically useful fields are title,
description, content-uri, versions and component-families (note that this
field is a list result since a component may logically belong to multiple families, even if this is
rare in practice).

Example response (fetching the above named fields, with some line-breaks):

<workflow id="3498" version="1"
 uri="http://www.myexperiment.org/workflow.xml?id=3498"
 resource="http://www.myexperiment.org/workflows/3498">
 <title>Extract TIFF dimensions</title>
 <description>
 Component that extracts the dimensions of a TIFF image.
 </description>
 <content-uri>
 http://www.myexperiment.org/workflows/3498/download/
 extract_tiff_dimensions._32796.t2flow
 </content-uri>
 <versions>
 <workflow id="4739" version="1"
 uri="http://www.myexperiment.org/workflow.xml?id=3498&version=1"
 resource="http://www.myexperiment.org/workflows/3498?version=1">
 Extract TIFF dimensions
 </workflow>
 </versions>
 <component-families>
 <component-family>
 http://www.myexperiment.org/packs/416
 </component-family>
 </component-families>
</workflow>

7

The content of the content-uri field is the exact URL from which the component
definition (a .t2flow document) can be downloaded from.

Creation of a component
POST /component.xml?elements={elems}
To create a component, send a suitable document to this API call. In particular, you need to
specify the title, the description, the component family (using the …/packs/{id} URI), the
content-type and the content (i.e., serialized implementing Taverna workflow) itself. The
optional {elements} parameter describes a comma-separated list of what elements
should be in the response (just as when retrieving a component); it is recommended that this
be title,description.

An example of a creation request (without the main payload) is:

<?xml version="1.0"?>
<workflow>
 <title> Example Component </title>
 <description> This is an example of a component. </description>
 <component-family>
 http://www.myexperiment.org/packs/592
 </component-family>
 <content-type>application/vnd.taverna.t2flow+xml</content-type>
 <content encoding="base64" type="binary">
 [base64-encoded .t2flow file here]
 </content>
</workflow>

The response to a successful creation operation is a document like this:

<?xml version="1.0"?>
<workflow id="12345" version="1"
 resource="http://www.myexperiment.org/workflows/12345"
 uri="http://www.myexperiment.org/workflow.xml?id=12345">
 <title> Example Component </title>
 <description> This is an example of a component. </description>
</workflow>

Addition of a new component version

POST /component.xml?id={id}&elements={elems}
Clients create a new version by posting the identical document to when creating a new
component, except that the target URL for the POST is now the component URL for a specific
component. The request and response documents are identical to above.

Deletion of a component

DELETE /workflow.xml?id={id}
Components are deleted by using a simple DELETE message, supplying the component’s ID
within the repository. Because this is really an operation on the superclass type, the message
should be sent to the /workflow.xml endpoint, not the /component.xml endpoint.

2.3.2 API for Component Families
Component families are a subclass of pack (collection of related workflows and files) in the
myExperiment API; any ID for a component family is also inherently an ID of a pack.

8

Discovery of component families

GET /component-families.xml
Lists all component families that the current user may see. The result list is in the form:

<component-families>
 <pack id="314" version=""
 resource="http://www.myexperiment.org/packs/314"
 uri="http://www.myexperiment.org/pack.xml?id=314">
 Task Data
 </pack>
 <pack id="414" version=""
 resource="http://www.myexperiment.org/packs/414"
 uri="http://www.myexperiment.org/pack.xml?id=414">
 SCAPE Image Migration Action
 </pack>
</component-families>

GET /component-families.xml?component-profile={uri}
Lists all component families that the current user may see and which have members that
should conform to the given profile (given by the resource URI for a particular profile).

Creation of a component family
POST /component-family.xml&elements={elems}
This creates a component family, with the optional {elems} indicating which elements are
desired in the response record. The recommended elements are title,description.

The request document, which must include a component-profile element that refers to
the file resource for the profile, is formatted like this:

<pack>
 <title> The family title </title>
 <description> A description of the component family. </description>
 <component-profile>
 http://www.myexperiment.org/files/12345
 </component-profile>
</pack>

The format of the response document (with recommended parameters) is:

<pack id="23415" version=""
 resource="http://www.myexperiment.org/packs/23415"
 uri="http://www.myexperiment.org/pack.xml?id=23415">
 <title> The family title </title>
 <description> A description of the component family. </description>
</pack>

Deletion of a component family

DELETE /component-family.xml?id={id}
This deletes the given family, but only if all the components within the family have also been
deleted.

9

2.3.3 API for Component Profiles
Component profiles are kinds of file objects in the myExperiment model; they share IDs.

Discovery of component profiles

GET /component-profiles.xml
This lists all component profiles that the current user has permission to read. An example of
the response is:

<component-profiles>
 <file id="904" version="6"
 resource="http://www.myexperiment.org/files/904"
 uri="http://www.myexperiment.org/file.xml?id=904">
 Migration Action Component
 </file>
 <file id="905" version="4"
 resource="http://www.myexperiment.org/files/905"
 uri="http://www.myexperiment.org/file.xml?id=905">
 Characterisation Component
 </file>
</component-profiles>

Description of a particular component profile

GET /file.xml?id={id}&elements={elems}
This API call retrieves detailed information about a particular profile (identified by its ID). The
optional {elems} parameter is a comma-separated list of fields to retrieve; the
recommended set is title,description,content-uri, with the content-uri
indicating where to retrieve the content of the profile document.

Example response (with content-uri split over multiple lines):

<file id="904" version="6"
 uri="http://www.myexperiment.org/file.xml?id=904"
 resource="http://www.myexperiment.org/files/904">
 <title>Migration Action Component</title>
 <description>
 A SCAPE component for migration actions
 </description>
 <content-uri>
 http://www.myexperiment.org/files/904/download/
 MigrationActionComponentProfile.xml
 </content-uri>
</file>

Creation of a component profile

POST /component-profile.xml?elements={elems}
This creates a component profile. The profile must have the content-type field set to
application/vnd.taverna.component-profile+xml or the operation will fail
to create a profile. The {elems} parameter may be supplied to select what elements
should be in the response; the recommended value is title,description.

Example creation request:

10

<file>
 <title>Profile Title</title>
 <description>A description of the profile.</description>
 <filename>profile.xml</filename>
 <content-type>
 application/vnd.taverna.component-profile+xml
 </content-type>
 <content encoding="base64" type="binary">
 [base-64 encoded profile contents]
 </content>
</file>

The response will be a file element with id, resource and uri attributes filled in.

<file id="12345" version=""
 resource="http://www.myexperiment.org/files/12345"
 uri="http://www.myexperiment.org/file.xml?id=12345">
 <title> Profile title </title>
 <description> A description of the profile. </description>
</file>

Deletion of a component profile

DELETE /component-profile.xml?id={id}
This deletes the component profile with ID equal to {id}, provided it is unused in any
component family.

3 SCAPE Component Ontology
To support the creation of machine-comprehensible components, the SCAPE project publishes an
ontology of terms. The formal address of this ontology, http://purl.org/DP/components/1.0, is a
PURL (persistent URL) that redirects to the real publication location (currently a hosted system at
Technical University of Vienna) as that allows for flexibility in where the data is located without any
requirement to modify existing profiles or components.

The ontology (see Figure 4, Figure 5 and Figure 6) is designed to complement workflows by providing
simple OWL statements about workflows and workflow parts. The statements are added as semantic
annotations to the relevant parts. Depending on the component's purpose, the component profile
prescribes mandatory and optional annotations.

The annotations can be specific individuals already defined in the ontology, e.g.
#MigrationAction, to identify the profile of a workflow. Since the ontology is pre-populated
with these individuals, they can be easily selected when creating a component. Additionally this
provides a unified vocabulary to identify workflow parts and their purpose.

For more complex and dynamic data, only the required OWL class of the annotation is defined in the
profile. This allows the workflow creator to add anonymous individuals containing user-defined data
and additional properties, e.g. #MigrationPath.

The ontology classes, properties and individuals we have defined can be roughly grouped by the
workflow part they annotate.

http://purl.org/DP/components/1.0

11

3.1 Workflow-level annotations
Annotations for the workflow itself (see Figure 4) contain the profile they adhere to. This allows
simpler querying by component type. To allow workflow discovery, the component's supported data
formats must be specified as MIME-types. To avoid repetitive data, the MIME-type's subtype name
can be replaced with a * wildcard indicating that all subtypes are supported.

Figure 4: Ontology of Whole-Component-Level Annotations

3.2 Port-level annotations
To support automated execution and composition of components the inputs and outputs must be
identified (see Figure 5). For input ports the ontology provides the #accepts property to
distinguish between input objects, parameters and other data. Parameter ports can further be
annotated with predefined values to simplify execution for the end user. Output ports should use the
#provides property to identify the data they produce, e.g. migrated files, or measures from the
measure catalogue3. The ontology optionally allows the component designer to restrict the legal
data-types of inputs and outputs.

Figure 5: Ontology of Port-Level Annotations

3.3 Internal annotations
In case the component uses external command line tools, the ontology (see Figure 6) allows the
component creator to specify the tools installation environment with the

3 http://purl.org/DP/quality/measures

http://purl.org/DP/quality/measures

12

#requiresInstallation property. The installation is bound to an environment, with some
common environments pre-defined as individuals in the ontology. The execution is often dependent
on the specific version of the external tool. Using the #dependsOn property allows defining the
dependency. This additionally allows discovery by the used tool and its license. Support for specifying
Debian packages, RPMs and Maven repositories as installation sources is provided by the
#hasSourceConfiguration property and it's subtypes.

Figure 6: Ontology of Tool-Level Annotations

3.4 The SCAPE component profiles
These ontologies are used to construct component profiles (which we have developed on GitHub,
https://github.com/openplanets/scape-component-profiles) and these are then uploaded to
myExperiment to deploy them into general use. These profiles, described in more depth at the above
page, formalize the constraints that ensure interoperability between the components defined by
SCAPE, allowing Plato to compose them into a preservation action plan with minimal additional
complexity or shim services4.

4 Supporting Tools
We provide two additional tools to support the creation and use of components.

4.1 Component Validator Library
We have created a component validator library to support the component repository (see Section
2.1). This library takes the location of a component definition and the location of a profile to check it
against, and produces a list of outcomes of evaluating the conditions described in the profile against
the component. This includes checking assertions about the cardinalities and depths of ports, and the
checking of assertions based on the annotations (both semantic and otherwise) on the component.

4 In Taverna terminology, shim services (usually just “shims”) are those that are used to coerce data from the
format of the output of one significant processing unit into the format of the input of another significant
processing unit. They are typically “uninteresting” from a scientific perspective, but are a necessary adaptation
where services are not explicitly designed to work together. One of the things that Taverna components do is
conceal any application of shims, allowing the standardization of the data formats in use in a community.

https://github.com/openplanets/scape-component-profiles

13

For example, if the profile states that an authorship attribute must be present, the evaluation rule
tests whether there is a net.sf.taverna.t2.annotation.annotationbeans.Author
annotation on the top dataflow in the workflow document described in the component definition. If
it is present, the validation rule passes, and if the annotation is absent, the rule fails.

A third state — warning — is used for technical passes for reasons that are unlikely to be desired. For
example, if a rule requires checking the depths of ports with a particular semantic annotation, but no
such annotations are present.

The validator library produces a list of these assertion-based statements. The API to the validator has
a single main Java class, org.taverna.component.validator.Validator. This has one
principal entry point:

List<Assertion> validate(URL componentUrl, URL profileUrl)

This takes in the locations of the definitions of the component and the profile (in each case, the URL
needs to be to the resource to read that contains the relevant document: for the component, this is
to the t2flow, for the profile, this is to the profile definition) and returns a list of evaluated assertions.
A long list of exceptions is possible (e.g. if either component or profile is unreadable). The
Assertion class, which has three trivial subclasses (Pass, Warn, Fail), is just a holder of final
fields; in particular it contains a description of why the assertion was deemed to have passed or
failed, but is otherwise of little interest as it has no externally-callable methods.

The library containing the validator is marked as being executable so that it can be used from
languages other than Java by invoking it as a program. When used this way, it takes two command-
line arguments (the URLs to the validate method described above) and produces a JSON document
on its standard output. This JSON document has six keys:

allSatisfied — a Boolean saying whether all assertions succeeded (i.e., are evaluated
to either Pass or Warn).

assertions — the array of assertion statements. Each assertion statement is a JSON
object describing the type of assertion (a string from satisfied, warning,
failed) and the message string. These are sorted so that the failed assertion
statements all precede the warning assertion statements, and the satisfied
assertion statements come last.

numSatisfied — a count of how many assertion statements are in the Pass state.
numWarning — a count of how many assertion statements are in the Warn state.
numFailed — a count of how many assertion statements are in the Fail state.
numTotal — a count of the total number of assertion statements.

An example of the output (with extra non-significant whitespace) is:

{
 "numTotal":9,
 "assertions":[
 {"message":"no component output port called 'out'","type":"failed"},
 {"message":"ignoring depth constraints","type":"warning"},
 {"message":"ignoring Description requirement","type":"warning"},
 {
 "message":"no Fred activity satisfies semantic constraints",
 "type":"warning"

14

 },
 {
 "message":"no depth information for port 'component output'",
 "type":"warning"
 },
 {"message":"found DESCRIPTION for component","type":"satisfied"},
 {"message":"found AUTHOR for component","type":"satisfied"},
 {
 "message":
 "component input port 'jp2file' depth is in permitted range",
 "type":"satisfied"
 },
 {
 "message":
 "confirmed semantic and cardinality constraints for activity(s)",
 "type":"satisfied"
 }
],
 "numWarning":4,
 "numFailed":1,
 "numSatisfied":4,
 "allSatisfied":false
}

The component validator is currently available as a source checkout from the myGrid Github project,
at https://github.com/myGrid/component-validator, and uses a Maven-based build process. We plan
to use the library in future versions of the Taverna Workbench to support component creation so
that the user creating a component can see ahead of time whether they are conforming to the
profile of the component family that they plan to publish a component within. However, the
validator will continue to also be available as a separate library and executable program as well.

4.2 Component Profile Editor
The component profile editor is a GUI tool for creating and editing component profiles, so that it is
not necessary to write these XML documents directly. It provides support for browsing the ontologies
in use, so that adding semantic annotation requirements to profiles is significantly easier, and it
constrains editing so that only structurally correct modifications can be made.

Figure 7: Component Profile Editor showing the SCAPE Migration Action Profile

As can be seen in Figure 7, the GUI provides the capability to control what annotations are present
on a component, with those annotation requirements being shown in human-readable form. For

https://github.com/myGrid/component-validator

15

example, the profile requires that a semantic annotation be made using the “components” ontology
(i.e., http://purl.org/DP/components/1.0, this being configured on the Annotation Ontologies tab)
that states that the component matches the semantic model of a migration action as defined in the
ontology. It also states that there should be at least one migration path annotated on the
component; the combination of these allows Plato (http://plato.ifs.tuwien.ac.at/plato) to understand
how to use the component when constructing a Preservation Action Plan.

Figure 8: Editing an Input Port Constraint

Similarly, Figure 8 shows the pane used to edit the constraints on an input port. The port in this case
is actually one that can occur any number of times (it is completely optional) and which is of depth 0
exactly (i.e., it is always a singleton value) and has some descriptive text on it. The port is identified
by the fact that it has an annotation on it that states that this is a parameter to the component, and
permits the assertion of possible predefined values that the parameter may be.

The component profile editor is currently available as a source checkout from the myGrid Github
project, at https://github.com/myGrid/component-profile-creator, and uses a Maven-based build
process. We may roll the functionality into a future version of the Taverna Workbench, so that the
profile editor tool is an integrated part of the workbench’s component management system.

5 Glossary
Term Definition
Component repository A store of Taverna components and component profiles. It is typically

expected that the component repository would also be the
component catalogue so that the components and their profiles can
be found, and it is typically treated as a synonym of a catalogue;
myExperiment is both a catalogue and a repository of Taverna
components.

Component profile An XML document that describes the constraints that a Taverna
component should adhere to, and the semantic annotations that may
be used with that component.

Plan Management Service A service that holds a Preservation Plan and manages its lifecycle. This
can be any service that implements the Plan Management API,
described in Deliverable D4.1. Note that a PMS may also implement
other APIs and be principally known by other names.

http://purl.org/DP/components/1.0
http://plato.ifs.tuwien.ac.at/plato
https://github.com/myGrid/component-profile-creator

16

Term Definition
Plato A web-based tool that creates a Preservation Plan and provides a user

interface for viewing, managing and updating that plan. The plan
itself is stored in the Plan Management Service after creation.

Preservation Action Plan A Preservation Action Plan is part of a Preservation Plan — or a
separate document for the purposes of processing — that describes a
set of digital objects, an operation (typically a transformation) to
apply to each of them, and a rule that allows the determination of
whether the operation on a particular digital object was successful on
the basis of characteristics measured on the instantiation of the
digital object, what it was transformed into, or the comparison of
what it was and what it became.

A Preservation Action Plan does not describe how to instantiate the
digital object, where to archive successful transformations, or where
to report the outcome of applying the PAP.

Preservation Plan A Preservation Plan is a live document that defines a series of
preservation actions to be taken by a responsible institution due to an
identified risk for a set of digital objects or records (called a
collection). It is defined by Plato and stored in a Plan Management
Service.

SCAPE Characterisation
Components

Characterisation components are a family of SCAPE Components
(defined to wrap tools produced in WP9) that compute one or more
properties of a single instantiated digital object or file. The output
ports that produce measures are always annotated with the metric
(in the SCAPE Ontology) that describes what the component
computes.

SCAPE Components SCAPE components are Taverna Components, identified by the SCAPE
Preservation Components sub-project, that conform to the general
SCAPE requirements for having annotation of their behaviour, inputs
and outputs. SCAPE components may be stored in the SCAPE
Component Catalogue, which is a part of the myExperiment web
service.

SCAPE Migration
Components

Migration components are a family of SCAPE Components (defined to
wrap tools produced in WP10) that apply a transformation to an
instantiated digital object or file to produce a new file. The input is
annotated with a term (from the SCAPE Ontology) that says what sort
of digital object/file is accepted, and the output is annotated with a
term that says what sort of file is produced.

SCAPE Ontology The SCAPE Ontology is an OWL ontology that formally defines the
terms used by computing systems in SCAPE.

SCAPE QA Components QA components are a family of SCAPE Components (defined to wrap
tools produced in WP11) that compute a comparison between two
instantiated digital objects or two files. They produce at least one
output that has a measure of similarity between the inputs, and that
output is annotated with the metric (in the SCAPE Ontology) that
describes the nature of the similarity metric.

17

Term Definition
SCAPE Utility Components Utility components are a family of Taverna Components that provide

miscellaneous capabilities required for constructing SCAPE workflows,
but which are not a core feature of the SCAPE preservation planning
process. For example, they can provide assembly and manipulation of
XML documents that contain collections of measures of workflows.

Note that utility components are not SCAPE components per se; they
do not conform to the standard profiles. Instead, they are used in
support roles.

Taverna Components Taverna components are Taverna workflow fragments that are stored
independently of the workflows that they are used in, and that are
semantically annotated with information about what the behaviour of
the workflow fragment is. They are logically related to a programming
language shared library, though the mechanisms involved differ.

Taverna components are stored in a component repository. This
repository can either be a local directory, or a remote service that
supports the Taverna Component API such as the SCAPE Component
Catalogue. Only components that are stored in a publically accessible
service can be used by a Taverna workflow that has been sent to a
system that was not originally used to create it.

Taverna Server Taverna Server is a multi-user service that can execute Taverna
workflows. Clients do not need to understand those workflows in
order to execute them.

Taverna Workbench The Taverna Workbench is a desktop application for creating, editing
and executing Taverna workflows.

Taverna workflow A Taverna workflow is a parallel data-processing program that can be
executed by Taverna Workbench or Taverna Server. It is stored as an
XML file, and has a graphical rendering.

Workflow repository A service that stores workflows, allowing them to be distributed to
other people in accordance with the defined access control policies. A
workflow repository that holds Taverna workflows is consequently a
Taverna workflow repository.

MyExperiment is an example of a workflow repository.

