

This work was partially supported by the SCAPE Project. The SCAPE project is co-funded by the
European Union under FP7 ICT-2009.4.1 (Grant Agreement number 270137).
This work is licensed under a CC-BY-SA International License

Large Scale Digital
Repositories executable

workflows for large-scale
execution

Authors
William Palmer (British Library), Bolette Ammitzbøll Jurik, Rune Bruun Ferneke-Nielsen (State &
University Library Denmark), Opher Kutner (ExLibris), Sven Schlarb (Austrian National Library),
Clemens Neudecker (National Library of the Netherlands), Matthias Hahn (Fachinformationszentrum
Karlsruhe)

May 2014

http://creativecommons.org/licenses/by-sa/4.0/

iii

Executive Summary

In the SCAPE project, the role of the testbeds is to employ SCAPE platform technology as well as
preservation components to develop workflows that can be used to process very large data sets.
The Large Scale Digital Repository Testbed develops workflows for processing data that does not fit
within the web content or research content testbeds. At a high level the workflows developed within
this testbed cover format migration, format characterisation, identification of preservation risks in
content, quality assurance, large scale ingest and repository profiling.
Since the previous deliverable D16.11, the testbeds as a whole have refined the preservation
scenarios and requirements, and provided input for the development of new tools and the adaption
of existing software. By using large data sets from a real-world production context, the testbeds were
able to provide feedback, bug reports and define further requirements for component developers.
In this deliverable, the large-scale workflows are described in the context of the different user stories
with a focus on the technical solutions. Datasets and details about the data is only mentioned if this
is required in order to explain technical decisions that have influenced workflow design.
Detailed evaluation results are not reported here, unless they informed design choices. Full results
will be reported in deliverable D18.2 - “SCAPE final evaluation and methodology report”.

1 http://www.scape-project.eu/deliverable/d16-1-lsdr-executable-workflows-for-experimental-execution

iv

Table of Contents
Deliverable ... i

Executive Summary ... iii

1. Introduction ... 5

2. Refining Scenarios to User Stories, Experiments and Evaluations .. 5

3. Following on from D16.1 ... 6

4. Large Scale Digital Repository Testbed User Stories ... 6

4.1. User Story: Characterisation of Large Audio and Video Files .. 6

4.1.1. Experiment: Characterisation and validation of audio and video files during ingest 7

4.2. User Story: Large Scale Audio Migration ... 9

4.2.1. Experiment: SB Experiment Audio MP3 to WAV Migration and QA on Hadoop Cluster 9

4.3. User Story: Large Scale Image Migration .. 12

4.3.1. Experiment: KB Metamorfoze Image Migration & QA .. 12

4.3.2. Experiment: BL Newspapers on the BL Platform .. 15

4.4. User Story: Large Scale Ingest ... 22

4.4.1. Experiment: Large Scale Ingest with Fedora4 ... 22

4.5. User Story: Policy-Driven Identification of Preservation Risks in Electronic Documents 26

4.5.1. Experiment: Validate PDF&EPUBs and check for DRM ... 26

4.6. User Story: Quality Assurance of Digitized Books ... 27

4.6.1. Experiment: Quality Assurance of Digitized Books Experiment .. 27

4.7. User Story: Repository Profiling .. 34

4.8. User Story: Validation of Archival Content Against an Institutional Policy 35

4.8.1. Experiment: Validate JPEG2000 Newspaper scans Using Jpylyzer 36

5. Other Large Scale Execution Methods .. 37

5.1. Using Rosetta ... 37

5.2. Using Microsoft Azure ... 40

5.3. Using Apache Pig within the Execution Platform .. 40

6. Conclusion and next steps ... 40

7. Glossary ... 41

5

1. Introduction
This deliverable describes the preservation workflows that have been developed by the Large Scale
Digital Repository Testbed (LSDRT) for execution on the SCAPE Platform.

The real-world large scale datasets that are in use by LSDRT are typical of the content that is held by
partner organisations that is not covered by the Web Content or Research Data testbeds:

● Audio files
● Video files
● Image files
● Document/eBook files
● Metadata

The types of preservation workflow that have been developed are also quite varied and at a high
level include:

● Characterisation of content
● Migration of one file format to another
● Validation that content matches an institutional policy
● Identification of files that contain preservation risks
● Large scale ingest of metadata

There are a wide variety of different workflow types that are covered within this testbed package.
The workflows make use of tools developed within the PC subproject (PC.WP.1 Characterisation
Components, PC.WP.2 Action Services, and PC.WP.3 Quality Assurance) and in some cases the
developers of those tools are active within the LSDRT work package.

In the two years since the previous deliverable, D16.1, several large changes within the work
package, including staff turnover, and the change from “Scenarios” to “User Stories” occurred. Also,
the initial large scale testing of the experiments in the User Stories was completed. The full results
from the large scale testing of the workflows described in this deliverable will be reported in the
D18.2 deliverable, in project month 44.

The main platform that is in use is the SCAPE Platform, but we also have some testing performed on
the Rosetta platform, a commercial digital preservation system. Extensive large scale testing on the
Rosetta platform has not been possible due to no partner institution having a local Rosetta
installation. Work has also been completed on web services for office format characterisation and
migration using the Microsoft Azure platform.

The User Stories for this testbed are described in the next section, followed by sections discussing
Rosetta, Azure, Apache Pig, a section detailing the next steps for this work package and finally, the
conclusions.

2. Refining Scenarios to User Stories, Experiments and Evaluations
The Scenarios, as described in D16.1, had become large and contained so much information that the
actual problem the scenario was trying to address wasn’t as clear as it could be.

6

After some consideration the Scenarios were refined into a streamlined, agile approach consisting of:
1. A User Story - a short and succinct high-level statement of a preservation issue
2. Each User Story can have one or more Experiments - an implementation of a solution for the

User Story - at this level particular details are documented. An Experiment includes details of
the dataset, preservation components, workflow and processing platform type. Some User
Stories have more than one experiment, where there are different organisations working on
the same User Story.

3. Each Experiment can have one or more Evaluations - details of a particular execution of an
Experiment, which includes details of the runtime environment, metrics according to the
Metrics Catalogue2 and any other information pertinent to that particular execution.

3. Following on from D16.1

Work has been completed on the next steps that were identified within D16.1. Microsoft Azure web
services for migration of office formats are available, as well as a new User Story for detecting DRM
within PDF and EPUB files.

User Stories and Experiments have been developed that address the needs of organisations, and they
have been demonstrated to scale to large-scale datasets. The Experiments are using software that
has been developed elsewhere within the project and good links have been fostered with other work
packages.

In D16.1 we planned to use the Results Evaluation Framework (REF) to evaluate the results of testbed
results. The sub-project has since established an internal evaluation methodology which no longer
requires the REF. The results from the large-scale execution of workflows are captured in the
Evaluations for work package 18 (Evaluation of Results) using the relevant metrics as defined by that
work package.

4. Large Scale Digital Repository Testbed User Stories

The Experiments described below have all been tested at scale (1TB or greater), whenever possible.
In the next section we will describe the high level user story, and then detail each experiment.

We are aware of the variation of detail of information within this and the following section. This is a
reflection of both the technical and organisational decisions and environment used within the
experiments. We felt it was important to capture this information within this deliverable.

4.1. User Story: Characterisation of Large Audio and Video Files

This user story is:

2 http://wiki.opf-labs.org/display/SP/Metrics+catalogue

7

As the owner of a large collection of video files I need a digital preservation system that can
characterise very large audio/video files to enable me (or a preservation watch system) to
evaluate the collection for preservation risks and perform ongoing risk management.

The user requirements are:

1. We need to be able to characterise very large (8GB+) video files
1. This includes identifying container formats and contained streams
2. Features extracted need to be decided - we need to consider what is useful to

extract and include here as requirements. See:
1. JISC Digital Media infokit: High Level Digitisation for Audiovisual Resources3
2. JISC Digital Media Guide: Metadata and Digital Video4
3. Mike Coyne and Mike Stapleton: “The Significant Properties of Moving

Images” (JISC Digital Preservation Programme: Study on the significant
properties of Moving Images), March 20085

2. We need to perform characterisation quickly and efficiently
3. It would be good to be able to validate video format compliance with specification

Developers note that some existing characterisation tools (JHOVE2 for instance) do not seem to work
well on large files. For JHOVE2 this has been submitted as a bug6. Also note this story provides the
opportunity to compare tools over time, such as the Tika/DROID/etc. This has not been put into an
experiment on audio and video files due to sparse resources.

4.1.1. Experiment: Characterisation and validation of audio and video files during ingest

Dataset Danish TV broadcasts, mpeg videos and mpeg-2 transport stream and Danish
Radio broadcasts MPEG1-Layer 2.

Platform SB Video File Ingest Platform7

Workflow(s) Taverna workflow part of the Danish State and University Library (SB)
“youseeingestworkflow” Github repository8.

This characterisation is performed at ingest time, when new data is added to the Danish State and
University Library Radio/TV collection. The daily Radio/TV broadcast ingest is almost 1TB.

We describe an in-production Taverna audio and video ingest workflow with both characterisation
and audio and video format validation. The tool used here is FFprobe9. We considered an experiment

3 http://www.jiscdigitalmedia.ac.uk/infokit/audiovisual-digitisation
4 http://www.jiscdigitalmedia.ac.uk/guide/metadata-and-digital-video/show-hidden
5 http://www.jisc.ac.uk/media/documents/programmes/preservation/spmovimages_report.pdf
6 https://bitbucket.org/jhove2/main/issue/181/do-not-fail-on-2gb-files-when-having-2gb
7 http://wiki.opf-labs.org/display/SP/SB+Video+File+Ingest+Platform
8 https://github.com/statsbiblioteket/youseeingestworkflow
9 http://www.ffmpeg.org/ffprobe.html

8

using FFprobe across all repository content. However, this tool is too fast to give any scale problems,
as it only reads the header of the files.

The Taverna audio and video ingest workflow below uses the FFprobe tool for characterisation. The
characterisations are compared with the specification for the audio and video files to be ingested
using Schematron10. The specifications were translated from human readable format to Schematron
by hand. We note that while FFprobe + Schematron is not satisfactory as a file format validation tool
it can reveal files with audio and video formats not complying with the specification.

The Taverna workflow is shown in the next figure.

Figure 4.1.1-1: Taverna workflow for large scale characterisation and validation

10 http://www.schematron.com/

9

This ingest workflow is responsible for retrieving the requested audio and video broadcasts list and
downloading the corresponding files and associated metadata. The files are then characterised using
FFprobe, and based on these characterisations, the audio and video file formats are validated against
the specification using Schematron11. If they validate, the files are then saved in the SB Bit
Repository12 and the metadata is saved in DOMS13, the SB metadata repository.

4.2. User Story: Large Scale Audio Migration

The user story is:

As the owner of a large audio collection, I need a digital preservation system that can migrate
large numbers of audio files from one format to another and ensure that the migration is a
valid and complete copy of the original.

User Requirements/Components:
1. We need to be able to migrate MP3 to WAV
2. We need a measure of similarity between two audio files based on how they 'sound'
3. We need to be able to compare the properties of MP3 files with the corresponding

properties of the migrated WAV files

4.2.1. Experiment: Audio MP3 to WAV Migration and QA on Hadoop Cluster

Dataset Danish Radio broadcasts, MP314

Platform SB Hadoop Platform15

Workflow(s) Workflow Entry: “Slim Migrate And QA MP3 to WAV Using Hadoop Jobs” on
MyExperiment16

Last year an experiment was undertaken at SB using the SCAPE tool suite xcorrSound17 and a Taverna
workflow. This experiment was reported on in the SCAPE Deliverable D16.1 LSDR Executable
Workflows for Experimental Execution18 and it is also documented on the SCAPE wiki19

This workflow contained

• Migration from MP3 to WAV using FFmpeg
• Extracting and comparing properties of the original and the migrated files using FFprobe

11 http://www.schematron.com/
12 https://sbforge.org/display/BITMAG/The+Bit+Repository+project
13 https://sbforge.org/display/DOMS/Home
14 http://wiki.opf-labs.org/display/SP/Danish+Radio+broadcasts%2C+mp3
15 http://wiki.opf-labs.org/display/SP/SB+Hadoop+Platform
16 http://www.myexperiment.org/workflows/4080.html
17 http://openplanets.github.io/scape-xcorrsound/
18 http://www.scape-project.eu/deliverable/d16-1-lsdr-executable-workflows-for-experimental-execution
19 http://wiki.opf-labs.org/display/SP/SB+Experiment+SO4+Audio+mp3+to+wav+Migration+and+QA+Workflow

10

• Validating that the migrated file is a correct file in the required format using JHOVE2
• Convert the MP3 file to WAV using mpg321
• Compare the two WAV files using xcorrSound waveform-compare

The new experiment described below is implemented to run on a Hadoop Cluster. It uses a Taverna
workflow, which invokes a number of MapReduce jobs on the Hadoop cluster.

The Taverna workflow (see Figure 4.2.1-1, below) contains Hadoop jobs for the following tasks:

● Migration from MP3 to WAV using FFmpeg
● Convert the MP3 file to WAV using mpg321
● Compare the two WAV files using xcorrSound waveform-compare

The workflow does not have Hadoop jobs for:

● Validating that the migrated file is a correct file in the required format using JHOVE2. The
value of this component is questionable, given the performance and reliability issues of
JHOVE2.

● Extracting and comparing properties of the original and the migrated files using FFprobe. This
component is very important and should be added to future iterations of the workflow. The
performance is good enough that we are not worried that this component will impair the
scalability of the workflow.

The project containing this workflow and associated Hadoop code is available from:
https://github.com/statsbiblioteket/scape-audio-qa.

Figure 4.2.1-1: Taverna workflow for large scale migration of audio files

Taverna Workflow
In summary, this workflow carries out migration, conversion and content comparison.
The top left box (indicating a nested Taverna workflow) migrates a list of MP3 files to WAV files using
a Hadoop20 MapReduce job using the command line tool FFmpeg21, and outputs a list of migrated
WAV files.

20 http://hadoop.apache.org/

https://github.com/statsbiblioteket/scape-audio-qa

11

The top right box represents a conversion of the same list of MP3s to WAV files using another
Hadoop MapReduce job which uses a different command line tool: mpg32122, and outputs a list of
converted WAV files. The Taverna workflow then combines the two lists of WAV files and the bottom
box receives a list of pairs of WAV files to compare.

In the bottom box the content of the paired files using a Hadoop MapReduce job using the
xcorrSound waveform-compare command line tool, and the results of the comparisons are returned
as outputs. The workflow takes lists of MP3 files as input, and currently the full list of files is first
migrated and converted and the full list of pairs of migrated and converted files is then compared.

Input/Output
The file containing the list of MP3 files to be migrated is available on HDFS. The MP3 files are stored
on NFS and the resulting WAV files are written to NFS. This has a number of reasons:

● The audio tools were written to read from and write to ordinary file systems.
● At SB digitally preserved material does not reside on HDFS, which means that in order to

migrate from and to HDFS, we would first need to copy the MP3s to HDFS and later copy the
WAVs from HDFS. These extra copy operations are expensive, when we are talking large-
scale audio collections.

● The SB Hadoop Platform is set up using network storage as local storage, which means that
we do not exploit the HDFS locality property, and thus accessing the files on NFS rather than
HDFS does not present a large overhead.

All preservation events, e.g. properties of original and migrated files were compared and accepted,
and all log files are all written to HDFS. This means we have a rather complex input/output model
with input from both HDFS and ordinary file systems, and also with output to both HDFS and ordinary
file systems. If this workflow were to be used in production, repository integration23 would need to
be added, such that data can be both retrieved from the repository and written to the repository.

Future Work
What we would like to do next is:

● Run an experiment using 1TB of MP3 files on the SB Hadoop cluster. This however requires
some updates to the workflow. For 1TB input MP3 files, the workflow currently generates
approximately 25TB of output and temporary WAV files.

● Extend the workflow with property comparison. The waveform-compare tool only compares
sound waves; it does not look at the header information. This should, however, be part of a
quality assurance of a migration. The reason this is not top priority is that FFprobe property
extraction and comparison is very fast, and will probably not affect overall workflow
performance much. The reason this has not been done yet is again sparse resources.

21 http://www.ffmpeg.org/
22 http://mpg321.sourceforge.net/
23 http://www.scape-project.eu/deliverable/d8-1-recommendations-for-preservation-aware-digital-object-
model

12

4.3. User Story: Large Scale Image Migration

This user story is:

As a curator of image files, I need a digital preservation system that can migrate a large
number of images from one format to another, ensuring that the migrated images conform
to our institutional profile, that no image data is lost and that the migration is cost effective
(saving storage for example).

It describes a requirement whereby a curator needs to perform a format migration on a large set of
data. The following user requirements were identified:

1. We need to be able to migrate TIFFs to JPEG2000s
i. Ideally we can migrate TIFF to a JPEG2000 conforming to any profile within

the limits of the JPEG2000 standard
ii. Migration must support the recommended JPEG2000 profile

2. We need to compare a JPEG2000 image file technical metadata and profile to the
recommended profile.

3. We need to ensure that the JPEG2000 contains all of the image data
4. We need to ensure that the JPEG2000 is a good and complete copy of the TIFF
5. We need to be able to report on the storage saving and perhaps cost benefit of doing

this

Details about specific experiments relating to this user story are described below.

It is worth noting that it would be possible to change the target file format for the migration quite
easily - with one step (Jpylyzer) that would need to be changed for different format validation, and
possibly some small changes in the reporting step. In one experiment below the codec is substituted
for another JPEG2000 one very easily, as the codec is for the same file format.

4.3.1. Experiment: KB Metamorfoze Image Migration & QA

Dataset National Library of The Netherlands (KB) Metamorfoze (sample batch)

Platform KB SCAPE Platform (pseudo-distributed Hadoop + SCAPE tools)

Workflow(s) A Java workflow and a batch file workflow

The Metamorfoze digitization programme started digitizing for conservation purposes in 2007. In
spite of the KB’s policy to store only JPEG2000 master files, Metamorfoze has stored all images in
TIFF format. Accordingly, it was decided to migrate the whole Metamorfoze collection to JP2 format
(JPEG2000 Part 1). The KB received a total of approximately 146 TB in TIFFs, which will be converted
to JP2s with an expected total size of 73 TB, thus significantly reducing storage costs for the long-
term preservation of the scanned images. The migration is currently performed on the level of
separate batches that are processed one at a time and in sequential order using a batch script.

13

Figure 4.3.1-1: Diagram of the workflow in the Metamorfoze migration project

Conceptual workflow

For the operational migration, a custom Python script (MMBatchConverter) is used that, for each
batch, converts all images, updates the associated metadata, and finally runs a number of quality
checks. Specifically, it performs the following actions for each TIFF image:

1. Extract the capture metadata to a sidecar file in XMP format (using ExifTool)
2. Convert the TIFF image to lossless JP2 according to a pre-defined profile. The metadata

sidecar files described in the previous step are embedded in the JP2. The conversion uses the
Aware JPEG2000 SDK24, which is called through a Python wrapper.

3. Convert the newly created JP2 back to a (temporary) TIFF using Kakadu’s kdu_expand tool25.
This step is needed for the pixel comparison (see below), since ImageMagick’s26 support of
JP2 is problematic, due to its use of an older JPEG2000 library.

4. Do a comparison of the pixel values in the source TIFF and the temporary TIFF using
ImageMagick. Count the number of non-identical pixels (which must be 0, since we’re using
lossless compression).

24 http://www.aware.com/imaging/jpeg2000sdk.html
25 http://www.kakadusoftware.com/
26 http://imagemagick.org/

14

5. Run Jpylyzer on the JP2 to check its validity, and to get the image’s technical characteristics.
6. Compare the image characteristics against the pre-defined profile.
7. An image passes the QA if all pixels are identical, the output is valid JP2 and the technical

characteristics are consistent with the profiles.

In addition to the above steps (which are repeated for each individual image), the
MMBatchConverter script updates the concordance tables that contain the structural metadata of
each batch. After all images in a batch are converted, the script does two cross-checks that verify if
all images that are defined in the concordance table actually exist, and if all images in the batch are
defined in the concordance table. The script also computes MD5 checksums for each created JP2,
which facilitates the detection of any changes at a later stage. The results of the conversion and the
outcome of all quality checks are then written to a number of log files.

Converting the entire Metamorfoze collection (146 TB in TIFFs) to JP2 using the MMBatchConverter
script is expected to take approximately 8000 hours of machine time if run on a KB DMZ
workstation27.

Implementation for SCAPE
For the purpose of SCAPE, an implementation of the above workflow was done in Java as to fully
leverage Hadoop functionalities and components provided by the SCAPE platform. The Java
implementation tries to emulate as closely as possible the operational workflow in the
MMBatchConverter script. The source is available on Github28.

In this implementation, the migration is triggered via the execution of a shell script that invokes the
main class of the Java project. As all the business logic could be implemented in the main Java class,
it was decided to not also provide a Taverna workflow. Such a workflow would have simply consisted
of a wrapped call to the conversion script as a local tool command.

The test was executed on the KB SCAPE platform consisting of a (pseudo-distributed) Hadoop cluster
with 4 nodes (1 master, 3 workers), each running 1 hyper threading CPU core on a virtualized Ubuntu
Linux 12.04 server. The Cloudera CDH4 was chosen as the Hadoop distribution. The following
software had to be pre-installed on each node:

1. jpwrappa: a Python wrapper for the command-line tool of the Aware JPEG2000 SDK
2. kdu_expand: a command-line tool from the Kakadu JPEG2000 Toolkit
3. Jpylyzer: a validator and feature extractor for JP2 images
4. Exiftool: a command-line application for reading and writing image meta information
5. GraphicsMagick: a software suite to create, edit, analyse or convert bitmap images
6. Probatron4J: a Java tool for checking XML content using ISO Schematron schemas

Data storage methods
The sample dataset for SCAPE consists of one batch from the ongoing Metamorfoze migration,
containing 8047 single-page colour TIFF images and adding up to approx. 170 GB of data. In addition
to the images, descriptive as well as technical metadata (DMD) and the log files of the migration of
the particular batch in the operational Metamorfoze migration project have also been collected for

27 The machine is a HP proliant ML370 G6 with 2x Quad core 3 Ghz and 32 Gb memory that is connected to the
SAN through an 10-40 GB connection. Three disks are reserved on the SAN for performing the conversion.
28 https://github.com/KBNLresearch/hadoop-jp2-experiment

https://github.com/KBNLresearch/hadoop-jp2-experiment

15

comparison. While the regular Metamorfoze migration uses SAN storage, the sample batch has been
ingested into HDFS for processing with the KB Hadoop platform29.

Findings
The KB has started the Metamorfoze migration project in April 2012. A total of approx. 4.7 million
TIFF images or 147TB of data is expected to be processed using this workflow. As of April 2014, the
migration is still ongoing with about 60% of the total amount already converted.

The purpose of the SCAPE experiment was to determine in how far this workflow could benefit from
parallelization in order to increase throughput but also standardisation and to ease quality assurance
with the help of SCAPE architecture and tools. However, since the workflow as defined requires the
invocation of several local command line tools, this could not be implemented in an optimal way so
that full advantage could be taken from using Hadoop as the execution engine. Local command-line
tools are spawned as individual Mappers, which causes some overhead compared to, for example, an
implementation that would be done fully in Java and thus native to Hadoop.

However, in comparison to the expected 8000 hours on the KB DMZ workstation with the
MMBatchConverter script, on a pseudo-distributed Hadoop cluster running on a single virtual server
with similar specs as the KB DMZ workstation, the time required to do the conversion could in
principle be reduced to roughly 5400 hours when the Hadoop implementation is used.

4.3.2. Experiment: BL Newspapers on the BL Platform

Dataset BL 19th Century Digitized Newspapers

Platform SCAPE Platform

Workflow(s) Three equivalent workflows; A Taverna Workflow, a Java workflow and a batch file
workflow

This experiment consolidates two scenarios from D16.1 - LSDRT2 and LSDRT3. They evolved to the
point that they were exactly the same, but one had the addition of an arguably essential step;
checking the migrated image data versus the original. Workflows were developed to test different
methods of execution (with combinations of Taverna and Hadoop, just Hadoop, and plain batch
files). After the initial testing, the experiments were extended to add retrieval of files from different
repositories/file stores.

The dataset contains master TIFF files (greyscale), access files, and metadata. For this experiment we
make use of 41,963 master TIFF files; approximately 1TB of data.

The test platform used was a 29-node virtualised Hadoop cluster running Ubuntu Linux and the
Cloudera distribution of Hadoop (Version: CDH4). There are 28 nodes for job execution, each with 1
CPU. The following software was pre-installed on the nodes:

1. Taverna command line: command line execution of Taverna workflows
2. Jpylyzer: JP2 (JPEG2000 Part 1) validator and properties extractor

29 http://wiki.opf-labs.org/display/SP/KB+Hadoop+Platform

16

3. Matchbox: image comparison QA tool (amongst other features)
4. Kakadu: a JPEG2000 codec
5. OpenJPEG: a JPEG2000 codec
6. ImageMagick: image comparison QA tool (amongst other features)
7. Exiftool: an image metadata extraction tool

Where no operating system packages were available, or a more recent version was required,
software was distributed to a local user’s home directory on all of the nodes via a simple shell
command. Distributing software in this manner meant that no files at the operating system level
were affected, thus maintaining OS stability.

An attempt was made to use the SCAPE ToolWrapper30, and a tool specification xml file containing
the definition for the correct encoding parameters was created. However, this effectively pushed a
single command beneath another layer of abstraction so instead of adding the overhead, the
command was used directly instead. The jp2check31 library used in the Java workflow generates
command line encoding settings for different codecs, and also use Schematron to check the outputs
from Jpylyzer for verification of the JPEG2000 encoding profile.

Data storage methods
Copies of the 1TB dataset were stored and accessible from the following repositories:

1. The HDFS local to the Hadoop cluster
2. A Webdav32 enabled NAS device local to the Hadoop cluster
3. A Fedora-Commons v3 repository local to the Hadoop cluster (in a VM, with data storage on

the NAS device)

Conceptual workflow

This is a description of the workflow that is implemented in different ways; those methods are
detailed later on.

1. Metadata extraction from original image
The first step is to extract the metadata from the original TIFF file. For this we use Exiftool to
extract both Exif and TIFF metadata as an XML file.

2. Image migration

We use a JPEG2000 codec to migrate an image from TIFF to JP2 (JPEG2000). The primary
codec we have been using during is OpenJPEG, but some tests were run using Kakadu. The
encoding profile we used was the British Library newspaper profile33. There was an issue with
OpenJPEG when using one of the settings in the profile, this bug was reported and should be
fixed in a future release34.

30 http://openplanets.github.io/scape-toolwrapper/
31 https://github.com/bl-dpt/jp2check
32 http://en.wikipedia.org/wiki/WebDAV
33 http://wiki.opf-labs.org/display/JP2/Example+JP2+profiles
34 http://code.google.com/p/openjpeg/issues/detail?id=209

17

3. Metadata extraction from migrated image
Following a successful migration image metadata is extracted from the JP2 file using Exiftool,
as described above, and also with Jpylyzer.

4. Image comparison

This step of the workflow compares the image payload (what you see) of the original and
migrated files. This step is important as it validates that the actual image has migrated
successfully and can be decoded from its new format.

5. Reporting
After all the previous stages of the workflow are completed, some reporting on the work
completed is made:

1. Status of image payload comparison* This also implicitly checks the dimensions of
the image)

2. Whether the JP2 file is valid*
3. Whether the encoding profile matches the one that was requested*
4. Zip all output files, along with a report XML file, into a BagIt35 like package

 Note that steps marked * are not executed in the batch workflow.

Comparison tools for image migrations - Matchbox vs ImageMagick
After the initial testing it was apparent that using Matchbox for image format migration checks was
outside its use case as it was not well suited to detecting minor/subtle differences between an
original and compressed image. Indeed, Matchbox is designed to find duplicates in the content
within sets of images, where two images with the same content can have major differences between
them (e.g. one is rotated, in a different resolution, or one has an additional border). For an image
migration it is important to be able to find out whether the image data is the same (if using lossless
compression) or as close to the original as possible (if using lossy compression).

Instead of Matchbox we made use of ImageMagick’s `compare` command; it can generate various
different metrics for comparison of images. We found that peak signal-to-noise ratio (PSNR)36 was a
useful metric to use; however, there are many other metrics that could have been used37.

Differences between OpenJPEG and Kakadu JPEG2000 codecs
When analysing the results from the initial large scale testing we found that there were differences
between the OpenJPEG and Kakadu JPEG2000 codecs. When using lossy compression the two main
differences were speed and image quality. A run against the 1TB dataset was significantly faster
when Kakadu was the codec (17h25m), in place of OpenJPEG (57h02m). However, the image quality
was slightly lower for Kakadu (as measured by PSNR) - all successful migrations with OpenJPEG were
over 50dB PSNR, and this threshold was lowered to 48dB for a successful Kakadu run. It could be that
a slightly higher threshold would have sufficed but this was not tested. As a result of these findings

35 http://en.wikipedia.org/wiki/BagIt
36 http://en.wikipedia.org/wiki/Peak_signal-to-noise_ratio
37 http://www.imagemagick.org/Usage/compare/

18

we looked at this issue further and produced a paper that investigates this matter. This paper was
presented at iPres 201338.

Workflow execution methods evaluated
Initial workflows using the following execution methods were tested:

1. Batch file execution (note that this method does not include any reporting steps)
2. Java defined workflow (i.e. a native MapReduce job)
3. A MapReduce job that executed one Taverna workflow per input file
4. A Taverna workflow controlling several MapReduce jobs (one per processing step)*
5. A MapReduce job that submitted workflows and files to a Taverna Server+

*Testing was run for an additional workflow type, where a Taverna workflow controlled a series of
distinct Hadoop MapReduce jobs. The set up for this job was complex and the implementation
required state to be kept in a message queue between the MapReduce jobs which added further
complexity. If one of the steps failed, for just one of the files, then this implementation would
terminate early, in a difficult-to-restart state. This work was not taken further after this experiment
due to the workflow being very complex and the apparent restart issues with this implementation.
These issues are not necessarily insurmountable but they do add a degree of complexity that does
not exist in other workflow execution methods tested, for little apparent reward.

+Following testing we found that Taverna Server was not suitable for use in the way in which it was
used in this workflow. It would have required a separate installation on each node in the Hadoop
cluster. However, the main issue with this method of execution was that it did not keep a copy of
Taverna in memory for reuse by workflows and instead started a whole new instance of Taverna for
each submitted workflow. As this was in addition to the main Taverna Server process it added more
overhead to the execution rather than less. After contacting the developers of Taverna Server it was
clear that this was the intention (to avoid unwanted interactions between workflows) and so this
method of execution was not developed further.

Having discounted the two methods as described above we continued to refine the remaining
workflows and testing them with the full 1TB dataset.

Detailed description: Batch workflow
The batch workflow method is written as a Bash shell script for Linux and was designed to replicate
as much of the conceptual workflow as possible, to provide a baseline for execution on a single node
of the Hadoop cluster, without the additional overhead of Hadoop. The batch workflow does not
perform any additional reporting steps on the tool outputs, as indicated above. This could be added,
however, the anticipated execution time for checking an XML file etc. is not significant and was not
deemed to be worthwhile.

“Chutney” Hadoop wrapper39
To enable a like-for-like comparison as much as possible, a MapReduce program called Chutney was
created that is responsible for recovering files from storage, placing them in a local directory,

38
http://purl.pt/24107/1/iPres2013_PDF/An%20Analysis%20of%20Contemporary%20JPEG2000%20Codecs%20f
or%20Image%20Format%20Migration.pdf
39 https://github.com/bl-dpt/chutney-hadoopwrapper/

19

executing one of the workflow types, storing the workflow outputs and generating the output for the
Reduce phase.

A by-product of this design is that the workflows can be executed without using MapReduce and
therefore do not need to contain any understanding of MapReduce. Thus the workflows are simple
and self-contained and can be easily interchanged.

It may be possible to use the self-contained workflows for assessing the batch workflow execution
time, and we will bear this in mind for future testing.

Detailed description: Java workflow
The Java workflow directly controls the execution of the tools as described in the conceptual
workflow. Where possible it executes code in Java - in this instance it is just the JP2 profile check and
report generation code. The non-Java, external tools that are used within this workflow are executed
by the Java code.

Tools are executed with the workflow directly calling the command line applications from Java, which
are executed in a separate process. Further integration would be possible by using the OpenJPEG
Java JNI bindings, for example, but this was not implemented due to the state of the interface.
Additionally it may be possible to use Jpylyzer (written in Python) directly in the Java code by using a
tool such as Jython. However, this approach was not tested. The anticipated additional speed boost
for a short runtime piece of code versus the time taken for an image encode is not significant. It also
ties the tools more closely to Chutney making it more difficult to introduce new versions of the tool.

Detailed description: Taverna workflow
The Taverna workflow has evolved over time to its current state. The current workflow takes three
inputs;

1. A compiled Schematron file for validating the JP2 profile used for encoding
2. A TIFF file
3. The original name of the TIFF file

To note: Taverna workflows are graphs made of several “Services” (nodes) that are linked together
using “Data links” (vertices).

The workflow has to be passed a TIFF file and the name of the file separately due to how Taverna
passes data between steps. The file data is transferred between workflow services transparently by
Taverna and named as specified in the service configuration (“File inputs” & “File outputs”). It is
necessary to pass a binary blob as otherwise a file reference would have to be passed, complicating
the execution. The original filename that is passed to the workflow is used in a BeanShell service to
correctly name the files in the output zip file.

20

Figure 4.3.2-1: Taverna Workflow for TIFF to JP2 migration40

This workflow has several interconnected services. Taverna ensures that the order of execution of
the services is correct and parallelizes it by running independent services together wherever
possible.

The Workflow Input boxes at the top (light blue) represent inputs to the workflow and the Workflow
Outputs box (blue) at the bottom represents the workflow output. The orange boxes such as
recoverSchematron and recoverTIFF) are tool services, and they execute an external program. The
remaining boxes are dealt with inside Taverna; blue: constant values such as isValidJP2 are yellow:
built in Taverna BeanShell services like XPath execution, such as transformWithSchematron, are pink
and custom BeanShell services such as generateReport are brown.

The orange tool services largely just execute a single command. The services define the filename that
the input and output files will use, Taverna is responsible for moving the data around. The tool can
assume that the input file will exist i.e. “input.tif”, and is responsible for ensuring that the output file
is created, i.e. “input.tif.jp2”. Taverna can then reuse that output file as an input to any linked
services. The “zipAllFiles” service ensures that the output files are renamed according to the correct
input filename and generates a BagIt-like output zip.

40 http://www.myexperiment.org/workflows/3401.html

http://www.myexperiment.org/workflows/3401.html

21

This version of the workflow uses much more of the built-in Taverna functionality than earlier
development iterations and is simpler and more understandable as a result.

Tool installation and use
All of the workflows described above require the installation of additional tools on the cluster. There
were three ways to deal with this;

1. Install operating system packages (official or SCAPE project ones) - wherever possible this
was the case but not all tools were available, or the latest versions of the tools.

2. Locally compiled binaries, or other packages of binaries, copied to a home directory on all
the nodes in the cluster. This can be achieved with a couple of lines of shell script. In this case
the binaries do not interfere with the operating system files and are available for use in the
workflows.

3. Binaries can be embedded into the Chutney jar file and extracted when required. This is
useful as it can be done without requiring administrator access to the cluster and ensures
that the workflows are self-contained. However, it means the jar file can get much larger and
there is a setup cost to preparing the tool for execution. The number of times this has to
happen might make this very costly. If this happened once per Mapper, and that Mapper
processed thousands of records, then this may be mitigated somewhat.

For this experiment we use the first and second methods above, with some data being embedded
into the jar similar to the third method, such as the Taverna workflow and Schematron files. This
decision was due to the expected reuse of the tools during development of the workflows, so that
they did not have to be re-copied throughout the cluster whenever a run was started.

Data storage methods compared
An interesting result was encountered during testing: the total runtime of the workflow was not
significantly affected by the location of the data; having the data locally in HDFS was not significantly
faster than recovering the data from a repository and saving it back out to the repository. It is worth
noting the following points:

1. The method for passing the files to the workflow did not enable Hadoop to make use of HDFS
data locality, although all the data was held internally within the cluster.

2. Accessing and saving files from an external (but also local) Fedora Commons repository took
57h50m vs 57h02m for accessing from HDFS. This was not a significant amount of time.
Copying files from an external (but also local) NAS into HDFS took 08h03m - factoring this
into the execution time means that it took much longer than just directly accessing the files
remotely. That time does not include copying the migrated files from the cluster back to the
NAS. The same NAS also hosted the data for the Fedora Commons repository.

3. These findings are probably due to the long execution time of the image migration workflow
and would not be applicable for cases where the ratio of execution time of the workflow is
less compared to the input data, i.e. a traditional MapReduce type text-processing workflow.

22

4.4. User Story: Large Scale Ingest

The User Story is:

As an institution we need a system that will enable us to ingest a large number of digital
objects and associated metadata into our digital repository securely, correctly and with
acceptable performance so that we can ensure safe deposit of this data.

Due to the increasing amount of digital objects libraries, research institutions and digital archives
must handle, the scalability and performance of repositories is becoming more and more important.

Scalability in large scale digital object repositories depends on a variety of parameters such as the
number, size, complexity, and heterogeneity of objects. Therefore, in relation to digital preservation,
any data processing, such as quality assurance, technology watch, preservation planning, and the
digital object repository must itself be scalable.

4.4.1. Experiment: Large Scale Ingest with Fedora4

Figure 4.4.1-1: Overview of the SCAPE architecture.

As illustrated in figure 4.4.1-1, the SCAPE Platform consists of several services such as the Execution
Platform, Planning and Watch Components and the Digital Object Repository. Several repository
implementations are being used in the project, such as the Fedora 2 based RODA repository by Keep
Solutions, the Fedora 3 based DOMS repository by SB, the Rosetta repository by ExLibris and a
Fedora 4 based implementation created by FIZ. To integrate repositories into the SCAPE environment
the following APIs have been defined:

1. Connector API: CRUD operations for digital objects.
2. Plan Management API: Interface to manage and execute preservation plans.
3. Report API: Interface to retrieve information about events taking place inside a repository,

e.g. ingest.

23

Ingesting a large amount of data into a repository is achieved by using a Loader Application that is
reading data from the file system and is capable of monitoring the ingest progress and creating
reports about it. The Loader Application is designed to be used by any repository that exposes the
Data Connector API and removes the burden from a repository provider to implement a specific
Loader Application for their repository.

The Austrian National Library's use case of ingesting a digital book collection was used to design the
scalable ingest process. The library receives hundreds of scanned books every month, and therefore
being able to ingest those digital books in the given time frame into a digital object repository is
required. The individual book pages of this collection are available as JPEG2000 files with
corresponding full-text and HTML full-text including layout files. The digital books are represented by
METS41 which aggregates the pages of the digital book. Each page of the book is represented by an
image, html file and plain text file with references to the physical files on a file server.

The digital object repository is used to store the metadata of the book scans and it does not manage
the binary files of each book. Other Repositories like RODA and ROSETTA are only able to deal with
managed content, as opposed to the referenced content used here. Additionally, the managed
storage option has been looked into during the ingest tests.

Fedora 4, the repository used in this use case, is still under development by Duraspace and SCAPE
partner FIZ Karlsruhe. The tests performed are based on alpha releases of Fedora 4 which is built on
top of:

• Modeshape42, a JCR repository maintained and developed within the JBOSS community
• Infinispan43, a distributed cache implementation
• JGroups, a messaging toolkit to transfer states between nodes.

All of these components can be configured while setting up a cluster. The configuration of each of
these layers adds complexity into the overall scenario and is outlined briefly in the following.

Fedora 4 Cluster Topologies
Basically clustering can be configured in two distinct topologies handled by Infinispan: replication and
distribution. Replication mode means that all entries are replicated to all nodes and offers high
durability and availability of data. This clustered mode provides a quick and easy way to share state
across a cluster, however replication practically only performs well in small clusters, due to the
number of replication messages that need to happen as the cluster size increases.

Replication can be synchronous or asynchronous. Synchronous replication blocks the caller until the
modifications have been replicated successfully to all nodes in a cluster. Asynchronous replication
performs replication in the background. Infinispan offers a replication queue, where modifications
are replicated periodically and can therefore offer much higher performance as the actual replication
is performed by a background thread. Asynchronous replication is faster, because synchronous
replication requires acknowledgments from all nodes in a cluster that they received and applied the
modification successfully (round-trip time).

41 http://www.loc.gov/standards/mets/
42 http://www.jboss.org/modeshape
43 http://infinispan.org/

24

The distribution mode replicates the entries only to a subset of the nodes in the cluster. Compared to
replication, distribution offers increased storage capacity, but with reduced availability (increased
latency to access data) and durability. Distribution makes use of a consistent hash44 algorithm to
determine where in a cluster entries should be stored and is configured with the number of copies
each cache entry should be maintained cluster-wide. Number of copies represents the trade-off
between performance and durability of data. The more copies are being maintained, the lower
performance will be, but also the lower the risk of losing data due to server outages.

Beside those cluster topologies, Infinispan can also be configured in a local mode to run as a single
instance. Running Fedora 4 in a local mode restricts the scalability approach only to vertical
scalability and horizontal scalability is not given. In this use case the focus was on horizontal
scalability and the local mode was used only as a reference to compare the performance of clustered
modes with the local mode of Fedora 4.

Hardware Clusters
To test the horizontal scalability of Fedora 4 we have been able to use several hardware clusters at
FIZ Karlsruhe, at the Steinbuch Center for Computing at KIT (SCC), at Amazon AWS, and at University
of Timisoara, Romania – one of the new partners in SCAPE.

To distribute the software on the distinct cluster nodes shell and puppet scripts to deploy the
necessary software and to start and stop the processes on the nodes were developed. Also, a
benchmark tool was developed and performance tests were carried out using JMETER. A summary
can be found on the Fedora 4 Wiki45 and the Open Planets Wiki46

Cluster Performance Issues
When it comes to write operation, e.g. performing a large scale ingest, there are four things that are
considered to be critical and which will be examined. These are, in order of cost:

● Network communication.
● Marshalling.
● Writing to the cache store.
● Locking, concurrency and transactions.

In the following each of these four items will be briefly discussed.

Network Communication
Data can be propagated to other nodes in a synchronous or asynchronous way. When synchronous,
the sender waits for replies from the receivers and when asynchronous, the sender sends the data
and does not wait for replies from other nodes in the cluster. With asynchronous modes, speed is
more important than consistency. For the network part, JGroups can be configured to send any
request across the network but will not wait for a reply from the receiver.

44 http://en.wikipedia.org/wiki/Consistent_hashing
45 https://wiki.duraspace.org/display/FF/Fedora+4.0+Alpha+3+Release+Notes#Fedora4.0Alpha3ReleaseNotes-
Benchmarking
46 http://wiki.opf-labs.org/display/SP/Ingest+of+digitized+book+METSs+into+Fedora+4

25

Marshalling
Asynchronous marshalling means whether the actual call from Infinispan to the JGroups layer is done
on a separate thread or not, i.e. requests can return back to the client quicker compared to
synchronous marshalling. The downside is that client requests can reach the JGroups layer in a
different order in which they’re called. This can effectively lead to data inconsistency issues in
applications making multiple modifications on the same key/value pair.

Cache Stores
Infinispan ships with several cache loaders that utilize the file system as a data store.

● FileCacheStore - a simple file system-based implementation
● BdbjeCacheStore - a cache loader implementation based on the Oracle/Sleepycat’s

BerkeleyDB Java Edition.
● JdbmCacheStore - a cache loader implementation based on the JDBM engine, a fast and free

alternative to BerkeleyDB.
● LevelDBCacheStore - a cache store implementation based on Google’s LevelDB, a fast key-

value store.

For all the tests in this scenario we have been using the FileCacheStore and LevelDBCacheStore
option.

Locking, Concurrency and Transactions
With optimistic transactions locks are being acquired at transaction prepare time and are only being
held up to the point of the transaction commit or rollback. Optimistic transactions should be used
when there is not a lot of contention between multiple transactions running at the same time.

Pessimistic transactions obtain locks on keys at the time the key is written and might be a better fit
when there is high contention on the keys and transaction rollbacks are less desirable. Pessimistic
transactions are more costly: each write operation potentially involves a RPC for lock acquisition.

Deadlocks on the other hand can significantly reduce the throughput of a system, especially when
multiple transactions are operating against the same key set.

Transactions cannot be completely disabled since Modeshape relies on a working transaction
configuration on the Infinispan layer. Therefore only the option to use pessimistic vs. optimistic
locking can be tested.

Summary
We have not only tested Fedora 4 but also the underlying Modeshape repository to get a better
understanding of the behaviour of the different layers Fedora 4 is made of. To evaluate the clustering
functionality of the above stack described above, the following setup was tested:

● Modeshape (without Fedora 4 on top) with Infinispan and JGroups
● Fedora 4 with Modeshape, Infinispan and JGroups
● Fedora 4 with the SCAPE Data Connector API implemented

26

Parameters that are crucial for the cluster performance such as the cluster topology, the network
communication, the CacheStores were varied and different transaction models have been tried. Shell
scripts and puppet scripts to deploy a Fedora cluster efficiently on a hardware cluster were
developed along with benchmarking tools and JMETER tests. Different hardware clusters with
different hardware in terms of CPU, disk I/O, and network bandwidth were used. As a result it was
not possible to find a cluster configuration that satisfies the SCAPE use case requirements. In fact, a
huge drop in the performance of a Fedora 4 cluster (and Modeshape cluster), by a factor of 100
compared to a single, non-clustered installation was observed, independent of the configuration and
hardware used. . The results have been discussed with Duraspace and they decided to postpone the
release of the Fedora 4 clustering feature to Fedora 4.1 which is beyond the SCAPE projects end date.

4.5. User Story: Policy-Driven Identification of Preservation Risks in Electronic
Documents

The user story is:

Digital repositories typically hold large numbers of electronic documents from various
sources. Common document formats such as PDF and EPUB include features that are
potential risks for long-term accessibility and preservation. Hence, in order to sustainably
manage their collections, institutions may want to identify specific preservation risks, either
at ingest or at some later stage.

4.5.1. Experiment: Validate PDF&EPUBs and check for DRM

Dataset PDF files from the Govdocs1 corpus. There are 231,683 PDFs (127.8GB) in the
dataset.

Platform SCAPE Platform

Workflow(s) A Java workflow contained within the DRMLint tool

This workflow is designed to detect the presence of DRM/encryption within PDF and EPUB files, and
to test that the file formats are valid. Optionally, it can extract the text from the input files. It
processes PDF files from HDFS and outputs a report XML file containing the results, inside a BagIt47
style archive.

The workflow makes use of a software tool developed in the Preservation Components subproject;
DRMLint. To detect validity and DRM, DRMLint makes use of several external software libraries along
with its own internal methods.

The workflow for this experiment is a straightforward MapReduce Java program contained within the
DRMLint tool itself. The input files are given to the tool as a list of files in HDFS. The analysis output
from DRMLint is stored in HDFS and in addition, the output from the Reduce phase of the workflow

47 http://en.wikipedia.org/wiki/BagIt

27

provides a list of comma separated values (filename, if valid, if DRM detected). The output from the
Reduce phase can be analysed, along with the in-depth results in the output stored in HDFS.

Work is underway to integrate the pdfPolicyValidate48 Schematron code into DRMLint for more fine-
grained policy checks.

4.6. User Story: Quality Assurance of Digitized Books

The user story is:

As a cultural heritage institution, we need a digital preservation system that can identify
whether there have been any cropping errors during the digitisation process.

4.6.1. Experiment: Quality Assurance of Digitized Books Experiment

Dataset Austrian National Library - Digital Book Collection

Platform ONB Hadoop Platform

Workflow(s) http://www.myexperiment.org/workflows/3069

The goal of this experiment was to parse large amounts of HTML files that are part of a large book
collection where each HTML page represents layout and text of a corresponding book page image.
These HTML files have block level elements described by the HTML element <div>. Each element has
a position, width and height representing the surrounding rectangle of a text or image block. The
average block width of these <div> elements is used to detect quality issues that exist due to
cropping errors.

In the SCAPE project, the Taverna Workflow Workbench49 is used for orchestrating long term
preservation tools and services operating on an underlying data flow. The first point of investigation
was to find a way of chaining Hadoop jobs using Taverna’s Tool service invocation mechanism.

The cropping error detection workflow is an applicable scenario for MapReduce because it uses the
Map function for parallelisation of the HTML parsing and the Reduce function for calculating the
average block width. However, some data preparation is needed before the MapReduce
programming model can be applied effectively.

The following diagram in figure 4.6.1-1 shows a Taverna workflow that combines several Hadoop job
components to model a linear data flow. The Java code of the Hadoop job implementation for
SequenceFile creation and hOCR parser are available on Github.50

48 https://github.com/openplanets/pdfPolicyValidate
49 http://www.taverna.org.uk/
50 https://github.com/shsdev/sequencefile-utility and https://github.com/shsdev/hocr-parser-hadoopjob

28

Figure 4.6.1-1: Taverna Workflow chaining various components for data preparation, average block width

comparison, http://www.myexperiment.org/workflows/3069

First of all, dealing with lots of HTML files, means that Hadoop’s “Small Files Problem” plays a role
here51. In brief, this is to say that the files to process are too small for taking them directly as input
for the Map function. In fact, loading 1000 HTML files into HDFS in order to parse them in a Map
function would let the Hadoop JobTracker create 1000 Map tasks. Given the task creation overhead,
this would result in a very bad processing performance. In short, Hadoop does not like small files, on
the contrary, the larger the better.

One approach to overcome this shortcoming is to create one large file, a so called SequenceFile52, in a
first step, and subsequently load that into HDFS. These two steps are handled by the
HadoopSequenceFileCreator Taverna component in the figure above. The component is based on a
Map function which reads HTML files directly from the file server, and stores a file identifier as ‘key’
and the content as BytesWritable ‘value’ (key-value-pair), as illustrated in figure 4.6.1-2:

51 http://www.cloudera.com/blog/2009/02/the-small-files-problem/
52 http://hadoop.apache.org/common/docs/current/api/org/apache/hadoop/io/SequenceFile.html

29

Figure 4.6.1-2: Illustration of the SequenceFile creation process.

As each processing node of the cluster has access to the file server, and given that each node
executes several tasks simultaneously using all CPU cores of the worker nodes, the SequenceFile is
created in a parallelised manner, limited by the bandwidth of the internal network (in this case
SequenceFile creation is highly I/O bound). Using block compression for the sequence files, there will
be less I/O traffic when running Hadoop jobs later on.

The JobTracker can then split the SequenceFile into 64MB splits, so that each TaskTracker parses a
bundle of HTML files and the task creation does not weigh so much compared to the amount of data
it processes.

Once the data is loaded into HDFS, the SequenceFileInputFormat can be used as input in the
subsequent MapReduce job which parses the HTML files using the Java HTML parser Jsoup53 in the
Map function and calculates the average block width in the Reduce function. This is done by the
HadoopHocrAvBlockWidthMapReduce Taverna component.

53 http://jsoup.org

30

Figure 4.6.1-3: Illustration of the average block width calculation Hadoop job.

In the Taverna workflow, the handover mechanism between two different Hadoop jobs is simply
established by the first job writing the output HDFS path to standard out, which the second job then
takes as the HDFS input path. The second job only starts after the first job has completed.

Figure 4.6.1-3 illustrates the MapReduce job of the workflow. To explain the MapReduce job, let k1,
as the identifier of the HTML file (data type: org.apache.hadoop.io.Text), and v1, as the value holding
the content of the HTML file (data type: org.apache.hadoop.io.BytesWritable) be the key-value pair
<k1, v1> input of the Map function. A book page usually contains several block level elements,
therefore the Mapper writes one <k1, v1> key value pair for each block that the parser finds. The
value is a string with coordinates, width, and height of the block element.

The Reduce function now receives a <k1, <v1>> list input, so that we can iterate over the blocks <v1>
of each HTML file k1 in order to calculate the average block width. The output of the Reduce function
is then <k1, v2>, v2 (data type: org.apache.hadoop.io.LongWritable) being the average block width.

Finally, the HadoopFsCat Taverna component simply writes content of the result file out to standard
out which is only used for demonstration on small data sets.

Job execution can be monitored in the Taverna Workflow Workbench as shown in figure 4.6.1-4 (if
the component is grey, processing finished successfully).

31

Figure 4.6.1-4: Average block width calculation Hadoop Job execution view in Taverna.

For long running jobs it makes sense to consult the web based Hadoop MapReduce Administration
web-interface. A screenshot of the running job Hadoop sequence file creation job is shown in figure
4.6.1-5.

Figure 4.6.1-5: Screenshot of the sequence file creation Hadoop job in the Hadoop Map/Reduce

Administration.

The use case is extended by including image metadata (image width) of the book page images. The
extended workflow includes a Hadoop Streaming API component (HadoopStreamingExiftoolRead)
based on a bash script for reading image metadata using Exiftool, as illustrated in figure 4.6.1-6.

32

Figure 4.6.1-6: Illustration of reading the image width using Exiftool via the Hadoop streaming API.

It then uses the MapReduce component (HadoopHocrAvBlockWidthMapReduce) from the previous
workflow. Additionally, Hive components for creating data tables and performing queries on the
result files are used, as shown in figure 4.6.1-7.

Figure 4.6.1-7: Screenshot of the Taverna workflow for using Hive.

The purpose of this workflow is to extract specific properties from the book page images and HTML
data in order to make it available for analytic queries using Hive’s MySQL-like query language. The

33

‘HiveSelect’ component is for testing that data has been loaded successfully and to do so it executes
a SELECT query with a JOIN on the two tables created by Hive:

select hocr_data.identifier,hocr_data.width,exif_data.width
from hocr_data inner join exif_data on
hocr_data.identifier=exif_data.identifier;

An example of the results from the Hive query to compare the image width against the average block
width in the HTML is shown in the following table:

Identifier Average width Exif width

Z119585409/00000218 1041 2210

Z119585409/00000219 826 2245

Z119585409/00000220 1122 2266

Z119585409/00000221 1092 2281

Z119585409/00000222 1026 2102

Z119585409/00000223 1046 2217

Z119585409/00000224 864 2263

During the workflow design phase, small data sets (such as one book with 815 pages) were used to
study the execution performance of the components involved and analyse where improvement was
needed. Figure 4.6.1-8 shows the execution log of the workflow with average execution times per
component.

Figure 4.6.1-8: Execution log of the workflow with average execution times per component.

In this case, it can be seen that the MapReduce job runs about 45 seconds and therefore it was
decided to focus on this component for improving the overall workflow runtime.

To conclude, Taverna offers a simple way of linking Hadoop jobs using Taverna’s “Tool” service
invocation mechanism.

34

The principal use of the Taverna Workbench is for demonstrating and sharing workflows during the
design and development phase. Taverna can be started from the command line54 since Taverna
version 2.3, so that it is not necessary to keep a GUI instance of the Taverna workbench accessible
during the workflow runtime, but the workflow can be started as a background process instead.

${taverna-install-dir}/taverna-2.3.0/executeworkflow.sh -
embedded -inputvalue rootpath ${path-to-input-dir} -inputvalue
${job-name-prefix} -outputdir ${output-dir} ${path-to-
workflow}/Hadoop_hOCR_parser_with_exiftool.t2flow

4.7. User Story: Repository Profiling

This user story is:

As a memory institution I would very much like to ensure that I’m not the only institution
holding specific file formats - spreading the risk in case of lack of migration-tools etc.

The context is that many repositories have similar content and are facing similar issues, but don't
have the means to share what they have and discover synergies in an easy way, beyond informal
community interaction. They want to be able to share and discover factual, reliable information, no
matter which repository is in use. Specifically they want to:

● be able to discover who else is holding content of a specific type (file format ID)
● know whether they are the only ones using a specific tool
● know the answer to questions like "How many uses Fedora Commons version 3.4 ?"

The SCAPE solution is SCOUT55, a preservation watch system being developed within the SCAPE
project. Characterisation components such as FITS56 and Apache Tika57 are used to generate
repository profiles to share with SCOUT. A variety of organisations both internal and external to the
SCAPE project could be connected to SCOUT to share information.

Using SCOUT allows organisations to:
a. Harness the wisdom of the crowds
b. Find and share expertise
c. Create community synergy
d. Discover opportunities
e. Common management of risks
f. Enhance reputation (top contributors on the front page of SCOUT)
g. Benefit from the experience of others
h. Use SCOUT as a preservation guide

These are the four steps to get engaged

1. Access SCOUT - get access to the community knowledge

54 http://www.taverna.org.uk/documentation/taverna-2-x/command-line-tool/2-3/
55 http://openplanets.github.io/scout/
56 http://projects.iq.harvard.edu/fits
57 http://tika.apache.org/

35

2. Create content profile - get information about your collection / find out what you
have

3. Share content profile - join the community and discover synergies
4. Define your interests - get notified about opportunities and risks, e.g. “who else is…”

& “am I the last one who…”

The User Requirements are:
I need a watch/monitor tool that, based on collection profiles for as many repositories as
possible, can and will tell me when the number of repositories holding a specific format (ID)
falls below a defined threshold

● SCOUT is the tool that SCAPE has developed to do this job
● A critical element is to have as many repositories as possible connected to SCOUT

Issues hampering an experiment:

● We need to consider how we can connect with SCOUT, and whether there is one central
instance or many separate instances

● We require access to a repository that can be profiled (i.e. access to one or more production
repositories)

No experiments have been created for this user story, or are expected to be. Development of SCOUT
adaptors have come too late to incorporate tests of SCOUT within testbed experiments. It is
envisaged that it will be taken up subsequently by the content holders, who wish to connect to a
centrally hosted SCOUT instance.

4.8. User Story: Validation of Archival Content Against an Institutional Policy

The user story is:

As a memory institution, I want content in our repositories to conform to the corresponding
file format specification, and the file format profile to conform to our institutional policies; so
that our content, existing as well as future, always has the appropriate quality as specified by
the file format specification and our institutional policies.

Furthermore, the following requirements and assumptions are present:

1. We assume that the content file format is known - i.e. we know the collection is a number of
MPEG-1 movies.

2. We need to be able to validate the file against its file format specification/structure.
3. We need to be able to define the expected file format profile to be machine readable.
4. We need to be able to compare the expected file format profile with the actual file format

profile.

36

4.8.1. Experiment: Validate JPEG2000 Newspapers Using Jpylyzer

Dataset Danish newspaper - Morgenavisen Jyllandsposten58

Platform SB Hadoop Platform59

Workflow(s) This experiment is using Hadoop MapReduce jobs.

The idea behind this experiment is that you have a digital newspaper collection, in JPEG 200060
format, and you want to verify that certain properties hold true for every file in the collection. The
properties that should hold true are specified in a control policy

The first step in the workflow will be to use Jpylyzer61 on each file in the newspaper collection for
extraction of metadata. The second step will compare the extracted metadata against the control
policy and report any differences. This is outlined on Figure 4.8.1-1.

Figure 4.8.1-1: Conceptual workflow for JP2 validation

Workflow version #1
The first iteration of the experiment used a very simple setup and focus on processing the files using
Jpylyzer - to get a first indication of the performance without any added complexity. Therefore, files
were read from local storage instead of using the repositories as would normally be the case.
Moreover, output from the processing was discarded – output from failing processes being the
exception - instead of being stored in the repositories.

Workflow version #2
Building upon the results from the first version of the first iteration, the experiment was modified to
better reflect an in-production workflow. The setup was further extended by adding content

58 http://wiki.opf-labs.org/display/SP/Danish+newspaper+-+Morgenavisen+Jyllandsposten
59 http://wiki.opf-labs.org/display/SP/SB+Hadoop+Platform
60 http://en.wikipedia.org/wiki/JPEG_2000
61 http://openplanets.github.io/Jpylyzer/

37

repositories, where data will be read from and written to. In detail, a Fedora 362-based repository will
be used for reading and writing content meta-data, and a bit repository63 for reading content. By
adding these systems, it is necessary to extend the experiment with components that can load and
store data in an efficient manner.

5. Other Large Scale Execution Methods

Whilst the majority of work that has been undertaken within this work package has made use of the
SCAPE Platform technologies, work has also been undertaken with other technologies. This work is
detailed here.

5.1. Using Rosetta

Introduction
Ex Libris LSDRT experiments have been geared toward implementing SCAPE tools within the context
of Rosetta, a commercial preservation system. For the purpose of SCAPE, Rosetta functionality has
been expanded to support loading SCAPE objects and accept RESTful API requests by the SCAPE
Loader Application. Other SCAPE tools were integrated using the existing Rosetta extendible Plugin
framework.

Due to external circumstances, the only possibility for a Rosetta Testbed instance was a local
environment, hosted by Ex Libris. This eliminated the possibility of testing large-scale datasets. It was
decided, therefore, that expanding a Rosetta environment and confirming an expected growth in
throughput should demonstrate scalability.

Experiments
The British Library provided a sample dataset of images for test purposes. The dataset consisted of
approximately 1000 images in the TIFF format. These were converted into two formats – JPEG2000
and PDF – in order to test the SCAPE Jpylyzer and DRMLint tools (see below). Each of the two formats
were wrapped (separately) in METS containers according to the SCAPE Data Model and loaded into
Rosetta via the Loader Application.

The Loader Application communicates with two Data Connector APIs – loading an Intellectual Entity
(IE) and retrieving a SIP status. This required developing a REST API layer that communicates with
native Rosetta (SOAP) APIs and transforms/maps output according to the Data Connector API
requirements. For example, Rosetta differentiates between a SIP ID and an IE PID (since Rosetta has a
one-to-many SIP-IE relationship), while SCAPE does not. And since the Rosetta ingest workflow
includes a series of validation checks (see below), synchronous creation of IEs and returning an IE PID
is not possible. The Loader Application therefore calls the asynchronous ingest Data Connector API,
for which Rosetta returns a SIP ID. Per API requirements, Rosetta maps this value to the IE created
for the SIP (relying on the SCAPE one-to-one SIP-IE relationship), so that it can be used to request the
lifecycle status of the SIP and eventually retrieve the IE itself once a PID is generated.

62 http://www.fedora-commons.org/
63 http://www.bitrepository.org

38

The Loader Application stores a local database of SIP IDs generated during the session (multiple
simultaneous processes are not supported). The Loader Application session remains alive until all
METS files have been submitted to Rosetta, and subsequently requests their lifecycle status until all
SIPs have completed the ingest process which can be either success, failure, or other, as defined by
the Data Connector API requirements, At this point the Loader Application clears its database and
terminates.

The Ex Libris LSDRT experiments therefore consist of three components: (1) Testing the Loader
Application by loading SIPs that contain files to test (2) Jpylyzer, and (3) DRMLint.

The Rosetta SIP loading workflow includes a native validation stack component, which utilises a
variety of standard tools to identify file formats, extract metadata, extract and/or compare checksum
values, run virus checks, and identify risk factors. Each of these components is based on a plugin
framework into which users can plug in industry-standard tools (DROID, JHOVE, etc.). The two
experiments described here involve plugging in SCAPE tools: Jpylyzer as a metadata extractor, and
DRMLint as a risk extractor.64 Each tool was plugged into Rosetta using a standard Java wrapper
interface.65

The following diagram illustrates the integration points between SCAPE components and Rosetta:

64 Rosetta Risk Extractors are metadata property- driven tools that register information in a designated “amd”
section of the Rosetta METS object. This information is later harvested by the Rosetta Preservation component
when creating a preservation set. In this experiment, the existence of rights-management properties are
registered as a risk by DRMLint.
65 See documentation in
https://developers.exlibrisgroup.com/resources/rosetta/javadoc/com/exlibris/dps/sdk/techmd/MDExtractorPl
ugin.html;
https://developers.exlibrisgroup.com/resources/rosetta/javadoc/com/exlibris/dps/sdk/risks/RiskExtractor.htm
l.

https://developers.exlibrisgroup.com/resources/rosetta/javadoc/com/exlibris/dps/sdk/techmd/MDExtractorPlugin.html
https://developers.exlibrisgroup.com/resources/rosetta/javadoc/com/exlibris/dps/sdk/techmd/MDExtractorPlugin.html
https://developers.exlibrisgroup.com/resources/rosetta/javadoc/com/exlibris/dps/sdk/risks/RiskExtractor.html
https://developers.exlibrisgroup.com/resources/rosetta/javadoc/com/exlibris/dps/sdk/risks/RiskExtractor.html

39

Defining ‘Scalability’: Rosetta Environment Architecture
The Rosetta environment is comprised of one or more application servers running JBoss AS and an
Oracle server. Communication between the application and database during SIP processing is based
on JMS queues and a worker thread pool. SIP processing can be scaled by adding workers to the pool
– either from the existing application servers or, in case the load on the servers is already high, by
adding to them.

LSDRT experiments were performed in an environment with three application servers, which
represents an average-size Rosetta cluster.66 During the first loading, the number of workers on one
server was left at default, while two of the servers was set to 0. During a second loading all servers
were set to the same (default) number of workers.67 The expected result was that the duration of the
tools’ processing would not be affected by the number of workers or servers, demonstrating that
these tools’ performance, when used within Rosetta SIP processing, scales in arithmetic progression.

Methodology and Integration
During SIP validation, a set of rules determines which tools are relevant for the incoming file formats.
The rules are based on the PRONOM unique identifier (format ID). That is to say, the tools that will
be deployed by the SIP validation stack (e.g. which metadata extractor, which risk extractor) are
determined by the outcome of its first stage, which is a process of format identification (and, if
necessary, disambiguation).

Rosetta was configured to use Jpylyzer as a metadata extractor for format ID x-fmt/392 (JP2), and
DRMLint as a risk extractor for fmt/18 (PDF v1.468). Initial testing confirmed the files in the dataset
were correctly identified by the DROID-based Rosetta format identification process, the appropriate
tools for each format were activated during the validation process, and each tool generated the
expected output (metadata properties for JP2 files and a risk for PDF files).

To measure performance, native Rosetta application server logging provides the necessary
information. Rosetta logging is configured to log the duration of each tool’s runtime.69 It was
expected that the average duration of a single process would remain constant when running one or
more application servers (while duration of the overall loading process in the latter case will naturally
decrease).

Conclusion
Initial results indicate performance of the tools was not affected by adding workers, indicating that
Rosetta will scale arithmetically when using Jpylyzer and DRMLint.

66 Based on Rosetta customer usage, as of January 2014.
67 The exact number of worker threads is determined by an internal algorithm. For the purpose of this
experiment and report suffice it to say that the load on all servers was set identically.
68 PRONOM assigns IDs fmt/14-20 to PDF versions 1.0-1.6, respectively. PDFs created for the purpose of this
test were all v1.4.
69 Duration is measured in ms when under one second, and rounded to a full second when over a second.

40

5.2. Using Microsoft Azure

Work has been undertaken by Microsoft Research to use Microsoft Azure for two purposes:

1. Characterisation of files using Apache Tika and DROID
2. Producing cloud services for format migration: “SCAPE Azure Services”7071

This work will be described in deliverable D11.3.

 SCAPE Azure Services72 provides a REST API to perform the following tasks:

● Upload / download / delete a file
● Get information about an uploaded file
● Get a list of supported file format conversions and convert files
● Compare two files

Currently the system supports DOC/DOCX, ODT, PDF and RTF, amongst other file formats. A SCAPE
Azure Client Toolkit (CLIKIT) has been developed to interface with the SCAPE Azure Services and this
toolkit could be used within a large-scale workflow.

No LSDRT workflows currently exist for using SCAPE Azure Services; however, benchmarking SCAPE
Azure Services for migrating documents is planned.

5.3. Using Apache Pig within the Execution Platform

Work to use Apache Pig for executable workflows was undertaken within the Platform subproject.
Although this work was not undertaken within this work package, it is complimentary to the work
described here, as it describes a workflow for TIFF to JP2 migration. It is discussed in much greater
detail in deliverable D6.3.

In short, the two approaches described there are:

1. Create an Apache Pig script as a workflow
2. Create a Taverna workflow and have it converted to an Apache Pig script (experimental)

6. Conclusion and next steps

There has been a wide variety of work undertaken within this work package, making use of, and
feeding back into, other SCAPE outputs. Through the large-scale workflows developed here, the
various ways in which SCAPE outputs can be used and combined with other platforms and tools has
been demonstrated.

70 https://lib.stanford.edu/files/pasig-oct2012/14-Milic-Frayling-SCAPE-Azure-FormatConversion-PASIG%2712-
FINAL2.pdf
71 http://wiki.opf-labs.org/display/SP/SCAPE+Azure+Platform
72 http://scapestaging.cloudapp.net:8080/

41

Different methods for parallelising the same workflow have been implemented, which additionally
demonstrates how standard tools and software can be parallelised. It has been demonstrated how
the SCAPE Execution Platform, and specifically Apache Hadoop, can be used to parallelise standard
software and Taverna workflows. In addition it was shown how Fedora 4, Rosetta and Apache Hive
could be used within the SCAPE Execution Platform ecosystem.

Good links have been fostered with other sub-projects, particularly Platform and Preservation
Components.

The work undertaken within this work package can be further developed by making use of the SCAPE
Platform Apache Pig work described in D6.3. However, this is not something that will be worked on
within this work package before the end of the SCAPE Project.

For various reasons, including tool readiness, not all of the experiments described above will have a
full evaluation. Full evaluation testing is currently underway and results for experiments with
complete workflows will be reported in deliverable D18.2.

7. Glossary

This glossary is derived from the SCAPE Project Glossary that is canonically held here: http://wiki.opf-
labs.org/display/SP/SCAPE+Glossary

Term Abbreviation Definition
Action Service An action service is a type of a digital preservation

service that performs some kind of action on a digital
object, e.g. migrating the object to a new file format.

Apache Hadoop Framework for processing large data sets on a computer
cluster. See http://hadoop.apache.org

Apache Pig A high-level language for creating workflows that run on
top of Hadoop/MapReduce

Apache Tika Software for identifying file formats. See
https://tika.apache.org/

Automated
Planning

 A systematic and semi-automatic process that provides
the ability to assess the impact of influencers and specify
actionable preservation plans that define concrete
courses of actions and the directives governing their
execution. This is the operative management of
obsolescence and maximizing expected value with
minimal costs.

Automated Watch A systematic and semi-automatic process that provides
the ability to monitor external and internal entities for
changes having a potential impact on preservation and to
provide notification.
The Automated Watch Component denotes the software
component that supports the Automated Watch process.

http://wiki.opf-labs.org/display/SP/SCAPE+Glossary
http://wiki.opf-labs.org/display/SP/SCAPE+Glossary
http://hadoop.apache.org/
http://hadoop.apache.org/
https://tika.apache.org/
https://tika.apache.org/
https://tika.apache.org/

42

Azure Platform A cloud-based service, providing virtualized services such
as Hadoop clusters

Bitstream A bitstream is contiguous or non-contiguous data within
a file that has meaningful common properties for
preservation purposes. A bitstream cannot be
transformed into a standalone file without the addition
of file structure (headers, and so forth) and/or
reformatting to comply with a particular file format.

Characterisation
Service

 A characterisation service is a type of a digital
preservation service that extracts any kind of information
from a digital object, as an identifier or file related
properties, for example.

Cloud Environments which provide resources and services to
the user in a highly available and quality-assured fashion,
thereby keeping the total cost for usage and
administration minimal and adjusted to the actual level
of consumption.

Cloud Computing A pay-per-use model for enabling available, convenient,
on-demand network access to a shared pool of
configurable computing resources (e.g., networks,
servers, storage, applications, services) that can be
rapidly provisioned and released with minimal
management effort or service-provider interaction.

(SCAPE)
Components

 SCAPE components are Taverna Components, identified
by the SCAPE Preservation Components sub-project, that
conform to the general SCAPE requirements for having
annotation of their behaviour, inputs and outputs. SCAPE
components may be stored in the SCAPE Component
Catalogue.

(SCAPE)
Component
Catalogue

 The Component Catalogue is a searchable repository for
the definitions of SCAPE Components, Component
Families and Component Profiles. The component
catalogue is implemented by the myExperiment service
and implements the Component Service API .

Component
Lookup API

 [Part of the Component API]

Component
Management

 Tools and the Component Catalogue Service
encompassing the creation, storage and cross-
organisational sharing of SCAPE Components.

Component
Profile

 A definition of an interface that a Component should
conform to. A Component profile defines what input
ports and output ports the Component must have, what
inputs and outputs may be optionally present, and what
semantic annotations may be attributed to the
Component and its ports.

Component
Registration API

 [Part of the Component API] A REST API to be
implemented by Digital Object Repositories to allow

http://www.myexperiment.org/
http://wiki.myexperiment.org/index.php/Developer:Components

43

SCAPE components to access the content and
preservation plans held on the repository.

Control Policies Policies that formulate the requirements for a specific
collection, a specific preservation action, for a specific
designated community This level can be human readable,
but should also be machine readable and thus available
for use in automated planning and watch tools to ensure
that preservation actions and workflows chosen meet
the specific requirements identified for that digital
collection.

Data locality “Data locality” refers to the fact that Hadoop tries to
assign map tasks to nodes that are close to the data, i.e.
the processing cores are on the same machine as the
hard disk storing the data blocks.

Data Publication
Platform

DPP A platform supporting the publication of data sets, e.g.
experimental SCAPE data, as Open Linked Data.

Digital Object
Repository

DOR An OAIS Compliant repository that provides a data
management solution for storing content and metadata
about digital objects, as well as Preservation Plans. DORs
implement three interfaces: Plan Management API; Data
Connector API; and the Report API.

DROID Software developed by the National Archives (UK) to
determine a unique file format identifier (PUID, see
corresponding glossary entry). DROID is a software tool
developed by The National Archives (UK) to perform
identification of file formats. See http://digital-
preservation.github.io/droid/

Execution
Environment

 An abstract layer of the Execution Platform which
provides a placeholder representing functionality to be
fulfilled by a specific technology. The Execution
Environment provides the physical infrastructure to
perform computation. An example might be the nodes of
a Hadoop cluster.

Execution
Platform

EP An infrastructure that provides the computational
resources to enact a Preservation workflow and execute
Preservation actions. Abstracted into three layers: the
Execution Environment; the Job Execution Service and
the Job Submission Service API. It could otherwise be
described as an extensible infrastructure for the
execution of digital preservation processes on large
volumes of data (using a combination of Apache Hadoop
and Taverna)

(SCAPE)
Experiment
Evaluation

 Findings and results, both measurable and non-
measurable, of a particular execution of an Experiment,
within the Testbed sub-package.

(SCAPE)
Experiment

 A unit of work that defines an implementation of a User
Story, within the Testbed sub-package. It consists of a

http://digital-preservation.github.io/droid/
http://digital-preservation.github.io/droid/
http://digital-preservation.github.io/droid/

44

dataset, one or more preservation components, a
workflow and a processing platform that can be used to
evaluate SCAPE technology and provide evidence of
scalable processing

FFprobe FFprobe FFprobe is a tool that belongs to the FFmpeg family and
is used to gather information about multi-media-files.
http://ffmpeg.org/ffprobe.html

File Format
Characterisation

 The process of determining the properties of a file
format, for example, the bit depth, colour space, width of
an image, the frames per second of a video, etc.

File Format
Identification

 The process of determining the identity of a file format
instance, typically by assigning an identifier, as the PUID
(see corresponding glossary entry) as a precise identifier
or a MIME Type (see corresponding glossary entry)
identifier as a vague file type identifier.

Hadoop See Apache Hadoop.
HDFS HDFS Hadoop Distributed File System. This is Hadoop’s file

system which is designed to store files across machines in
a large cluster.

HBase HBase Distributed database on top of Hadoop/HDFS, see
https://hbase.apache.org

Intellectual Entity IE A set of content that is considered a single intellectual
unit for purposes of management and description – for
example, a particular book, map, photograph, or
database. An intellectual entity may have one or more
digital representations.

Job Execution
Service

JES An abstract layer of the Execution Platform which
provides a placeholder representing functionality to be
fulfilled by a specific technology. The Job Execution
Service provides job scheduling functionality, allocating
computing tasks amongst the available hardware
resources available within the Execution Environment. An
example might be Taverna-Server or Hadoop.

Job Submission
Service

JSS An abstract layer of the Execution Platform which
provides a placeholder representing functionality to be
fulfilled by a specific technology. Provides the entry point
to the Execution Platform, implementing a remotely
accessible interface to enable a user or client application
to schedule and execute workflows (jobs) on the
Execution Environment. The exact interface depends on
the underlying Job Execution Service and Execution
Platform, but typical examples would be the Hadoop API
provided over a SSH connection, or the Taverna-Server
REST API over HTTP.

Loader
Application

 A component that loads Digital Objects into a Digital
Object Repository that implements the SCAPE Data
Connector API.

http://ffmpeg.org/ffprobe.html
http://ffmpeg.org/ffprobe.html
http://ffmpeg.org/ffprobe.html
https://hbase.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/

45

Map/Reduce MR A programming paradigm for processing large data sets
using a parallel, distributed algorithm on a Hadoop
cluster.

Microsoft Azure
Platform

 See Azure Platform

MIME Type A standard identifier used on the Internet to indicate the
type of data that a file contains.

MyExperiment A web application to allow users to find, use and share
scientific workflows and other Research Objects, and to
build communities around them.

NFS Network File System
Plan Management
API

 An API to be implemented by Digital Object Repositories
that provides HTTP endpoints for the retrieval and
management of Preservation Plans.

Plan Management
Service

PMS Any service that implements the Plan Management API is
a Plan Management Service. Note that a PMS may also
implement other APIs and be principally known by other
names.

Plato A web-based tool that creates a Preservation Plan and
provides a user interface for viewing, managing and
updating that plan. The plan itself is stored in the Plan
Management Service after creation.

Preservation
Component

PC See SCAPE Component

Preservation Plan A preservation plan is a live document that defines a
series of preservation actions to be taken by a
responsible institution due to an identified risk for a set
of digital objects or records (called a collection).
It is defined by Plato and stored in a Plan Management
Service.

Program for
parallel
Preservation Load

PPL An application that takes an existing Taverna Workflow
as an input and automatically generates a Java class file
that can be executed on a Hadoop cluster.

PRONOM PRONOM is an information system about data file
formats and their supporting software products. See
https://www.nationalarchives.gov.uk/PRONOM

Pronom Unique
Identifier

PUID The PRONOM Persistent Unique Identifier (PUID) is an
extensible scheme for providing persistent, unique and
unambiguous identifiers for records in the PRONOM
registry. Such identifiers are fundamental to the
exchange and management of digital objects, by allowing
human or automated user agents to unambiguously
identify, and share that identification of, the
representation information required to support access to
an object. This is a virtue both of the inherent uniqueness
of the identifier, and of its binding to a definitive
description of the representation information in a

https://www.nationalarchives.gov.uk/PRONOM
https://www.nationalarchives.gov.uk/PRONOM
https://www.nationalarchives.gov.uk/PRONOM

46

registry such as PRONOM. From:
http://www.nationalarchives.gov.uk/aboutapps/pronom
/puid.htm

Pronom Signature
File

 Signature files are generated by PRONOM (see
corresponding glossary entry) and used by DROID (see
corresponding glossary entry) for file format
identification. The signature file contains a subset of the
information from the PRONOM knowledge base required
by the DROID software to perform the file format
identification. See
https://www.nationalarchives.gov.uk/aboutapps/prono
m/droid-signature-files.htm

Preservation
Watch

 See Automated Watch

Quality Assurance
Component

 A Quality Assurance Component is used to determine a
quality measure related to the outcome of applying an
Action Service (see corresponding glossary entry) to a
digital object.

Results Evaluation
Framework

REF A generic semantic system for evaluting large datasets of
experimentation results in a simple fashion

Report API An OAI_PMH based API to be implemented by Digital
Object Repositories that enables the SCAPE Automated
Watch component to retrieve information about the
state of the repository.

Rosetta Platform A digital preservation repository/system produced by Ex
Libris

Scalable
Preservation
Environments

SCAPE An EU funded project developing scalable services for the
planning and execution of institutional preservation
strategies on an open source platform that orchestrates
semi-automated workflows for large-scale,
heterogeneous collections of complex digital objects.

SCAPE
Characterisation
Component

 Characterisation components are a family of SCAPE
Components (defined to wrap tools produced in WP9)
that compute one or more properties of a single
instantiated digital object or file. The output ports that
produce measures are always annotated with the metric
(in the SCAPE Ontology) that describes what the
component computes.

SCAPE Migration
Component

 Migration components are a family of SCAPE
Components (defined to wrap tools produced in WP10)
that apply a transformation to an instantiated digital
object or file to produce a new file. The input is
annotated with a term (from the SCAPE Ontology) that
says what sort of digital object/file is accepted, and the
output is annotated with a term that says what sort of
file is produced.

SCAPE Ontology The SCAPE Ontology is an OWL ontology that formally

http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm
http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm
http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm
http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm
https://www.nationalarchives.gov.uk/aboutapps/pronom/droid-signature-files.htm
https://www.nationalarchives.gov.uk/aboutapps/pronom/droid-signature-files.htm
https://www.nationalarchives.gov.uk/aboutapps/pronom/droid-signature-files.htm
https://www.nationalarchives.gov.uk/aboutapps/pronom/droid-signature-files.htm

47

defines the terms used by computing systems in SCAPE.
SCAPE Platform See Execution Platform
SCAPE QA
Component

 QA components are a family of SCAPE Components
(defined to wrap tools produced in WP11) that compute
a comparison between two instantiated digital objects or
two files. They produce at least one output that has a
measure of similarity between the inputs, and that
output is annotated with the metric (in the SCAPE
Ontology) that describes the nature of the similarity
metric.

SCAPE Story A short and succinct high-level statement of the
preservation issue encountered by a partner institution.

SCAPE Utility
Component

 Utility components are a family of Taverna Components
that provide miscellaneous capabilities required for
constructing SCAPE workflows, but which are not a core
feature of the SCAPE preservation planning process. For
example, they can provide assembly and manipulation of
XML documents that contain collections of measures of
workflows.

Note that utility components are not SCAPE components
per se; they do not conform to the standard profiles.
Instead, they are used in support roles.

Scout An Automated Watch system that provides an
ontological knowledge base to centralize all necessary
information to detect preservation risks and
opportunities

Taverna
Components

 Taverna components are Taverna workflow fragments
that are stored independently of the workflows that they
are used in, and that are semantically annotated with
information about what the behaviour of the workflow
fragment is. They are logically related to a programming
language shared library, though the mechanisms
involved differ.

Taverna components are stored in a component
repository. This can either be a local directory, or a
remote service that supports the Taverna Component
API (e.g., the SCAPE Component Catalogue). Only
components that are stored in a publicly accessible
service can be used by a Taverna workflow that has been
sent to a system that was not originally used to create it.

Taverna
Command Line
Tool

 The Taverna Command Line Tool can execute a Taverna
Workflow in a terminal/command prompt, without
displaying a Graphical User Interface (GUI)

Taverna Server TAVSERV Taverna Server is a multi-user service that can execute
Taverna workflows. Clients do not need to understand

48

those workflows in order to execute them.
Taverna
Workbench

 The Taverna Workbench is a desktop application for
creating, editing and executing Taverna workflows.

Taverna Workflow A Taverna workflow is a parallel data-processing program
that can be executed by Taverna Workbench or Taverna
Server. It is stored as an XML file, and has a graphical
rendering.

Tool-to-
MapReduce
Wrapper

ToMaR A SCAPE developed tool which wraps command line tasks
for parallel execution as Hadoop MapReduce jobs

Toolspec An XML file written to a standard API that contains
details of how to execute a tool for a particular purpose;
for example txt2pdf might define how to use a command
line tool to convert text to pdf. Toolspecs can have
different types such as migration or QA.

Toolwrapper The toolwrapper is a Java tool developed in the SCAPE
Project to simplify the execution of the following tasks:
Tool description (through the toolspec); Tool invocation
(simplified) through command-line wrapping; Artifacts
generation (associated to a tool invocation, e.g., Taverna
workflow); and Packaging of all the generated artifacts
for easier distribution and installation

(SCAPE) User
Story

 See SCAPE Story

