
This work was partially supported by the SCAPE Project. The SCAPE project is co-funded by the
European Union under FP7 ICT-2009.4.1 (Grant Agreement number 270137).
This work is licensed under a CC-BY-SA International License

Web content executable
workflows for large-scale

execution

Authors
Sven Schlarb (Austrian National Library), Leila Medjkoune (Internet Memory Foundation), William
Palmer (British Library)

May 2014

http://creativecommons.org/licenses/by-sa/4.0/

iii

Executive Summary

In the SCAPE project, the role of the Testbeds is to employ SCAPE platform technology as well as
preservation components to develop workflows that can be used to process very large data sets.
The Web Content Testbed develops workflows for processing web content in the context of
preservation scenarios related to identification and characterisation of web content as fundamental
digital preservation tasks and quality assurance to support web archives in improving web crawls and
preserving stored content.
In relation to the previous deliverable, D15.1, The Web Content Testbed has refined preservation
scenarios and requirements to provide input for the development of new tools and the adaption of
existing software. By using large data sets from a real-world production context, the Testbeds were
able to provide feedback, bug reports and to define further requirements for component developers.
In this deliverable, the large-scale web content processing workflows are described in the context of
the different preservation scenarios with a focus on the technical solutions. Data sets and details
about the data is only mentioned if this is required in order to explain certain technical decisions that
have influenced the workflows design.

iv

Table of Contents

Executive Summary iii

1 Introduction 1

2 Refined Web Content Testbed User Stories 1

2.1 ARC to WARC Migration User Story 2

2.2 Comparison of Web Snapshots User Story 3

2.3 File Format Identification and Characterisation User Story 4

3 Large-scale Web Content Testbed Solutions 5

3.1 ARC to WARC Migration Solution 6

3.2 Comparison of Web Snapshots Solution 10

3.3 File Format Identification and Characterisation Solution 13

3.3.1 Unpack ARC container files and apply file format identification using Droid 13

3.3.2 File format identification using Nanite (DROID API) 17

3.3.3 File format characterisation using Fits 18

4 Conclusion 21

5 Glossary 22

1

1 Introduction

The Testbeds are divided into application areas, and this deliverable is about the development of
large-scale executable workflows for processing web content using real-world data from different
SCAPE partner institutions doing web archiving.
Web archives usually consist of large data collections of multi-terabyte size, the largest archive being
the Internet Archive1, which according to its own statements stores about 364 billion pages that
occupy around 10 petabytes of storage.2
All of the memory institutions participating in the Web Content Testbeds have data sets of multi-
Terabyte size, and the goals of the Testbeds include making use of the SCAPE Execution Platform and
Preservation Components and developing workflows that can be used to process large web content
data sets in different institutional environments.
The beginning of 2012 was an important turning point for the Web Content Testbed in several
respects. First, during this period, there was a transition from the “preservation scenarios” collected
at the beginning of the project to a consolidated list of so called “user stories” describing an
application scenario from a user perspective and allowing for requirements to be easily derived for
solution and component development. Second, it was at this time that the SCAPE Execution Platform
became available and the large-scale workflow development tasks started. This meant that the
workflow design, components and technical solutions described in the previous SCAPE deliverable
D15.1 had to be checked against the new requirements for large-scale data processing using the
SCAPE Execution Platform. Third, from this time on, the Web Content Testbed was using large data
sets consisting of archived web content in the ARC3 and WARC4 format from Terabyte to multi-
Terabyte size.
In this deliverable, the large-scale web content processing workflows are described in the context of
the different user stories with a focus on the technical solutions. Evaluation results will be made
available in deliverable D18.2 and will therefore only be mentioned if this is required to explain
certain technical decisions that have influenced the workflows development. The user stories are the
main structuring principle of this deliverable and are described in section 2.
Section 3 describes the solutions that have been developed in form of workflows that can be used to
address the requirements outlined for the various user stories presented in section 2. The solutions
are described in a generic manner, while details that only apply in an institutional context are
explained in corresponding sub-sections.
The conclusion gives a summary highlighting the most important outcomes of this deliverable.

2 Refined Web Content Testbed User Stories

With the user stories presented in this deliverable, the Web Content Testbed presents large-scale
executable workflows for all of the preservation component types, namely migration,
characterisation, and quality assurance preservation components. The development of these
components is represented by the corresponding work packages Action Services (PC.WP.1),

1 http://archive.org
2 http://archive.org/web/petabox.php
3 http://archive.org/web/researcher/ArcFileFormat.php
4 http://bibnum.bnf.fr/WARC

2

Characterisation Services (PC.WP.2), and Quality Assurance Services (PC.WP.3) of the Preservation
Components sub-project.
In this sense, the ARC to WARC Migration user story in section 2.1 is focused on the development of a
file format migration workflow with an action service. The Comparison of Web Snapshots user story
in section 2.2 presents the approach to integrate a Quality Assurance Component in an existing
workflow for web site crawling, and the File Format Identification and Characterisation user story in
section 2.3 is about the development of deep characterisation workflows identifying and/or
characterising the payload content of web archive container files.
All stories have in common that the data they are using is available in form of container files in the
ARC format as proposed by the Internet Archive or in the successor format WARC, which is published
as an ISO Standard.5 Therefore, finding appropriate ways to deal with these kinds of container files
was essential to all of the user stories presented here.
Another requirement that relates to all Web Content Testbed user stories has to do with the fact that
the content can in principle be anything harvested from the web. This means that components used
to process these files must be able to handle nearly anything in a stable manner and that a process
showing unexpected behaviour must not interrupt the main process. This is a necessary requirement
that SCAPE Preservation Component developers had to take into consideration, because only by
addressing this requirement is it possible to set-up experiments for evaluating workflow runs using
large data sets.

2.1 ARC to WARC Migration User Story

The ARC to WARC migration user story deals with the question of how web archive content should
actually be stored for the long term. Originally, content was stored in the ARC format, a format
developed by the Internet Archive6 in connection with the Heritrix Web Crawler7 software which
produced these files as the default persistent storage file format for crawled web sites. The format
was designed to hold multiple web resources aggregated in a single – optionally compressed –
container file. But this format was not supposed to be an ideal format for storing content for the long
term; for example, it was lacking features that allow adding contextual information in a standardised
way. For this reason, the new WARC format provides additional features, especially the ability to
hold harvested content as well as any meta-data related to it in a self-contained manner.
A particularity of web archiving is the fact that, while content is continuously changing on one side, it
remains static on the other. In order to preserve the changes, web pages are harvested with a certain
frequency of crawl jobs. Storing the same content at each visit would create content redundantly and
not make efficient use of storage.
For this reason, the Netarchive Suite8 – originally developed by The Royal Library9 and The State and
University Library10 and used by other libraries as well – provides a mechanism called “deduplication”
that detects if content has already been retrieved and therefore references the existing payload
content. The information about where the referenced content is actually stored is available in the
crawl log files. This means that if the crawl log file is missing, there is actually no knowledge of any
referenced content. In order to display a single web page with various images, for example, the

5 http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=44717
6 http://archive.org/web/researcher/ArcFileFormat.php
7 https://webarchive.jira.com/wiki/display/Heritrix/Heritrix
8 https://sbforge.org/display/NAS/NetarchiveSuite
9 https://sbforge.org/display/NAS/KB
10 https://sbforge.org/display/NAS/SB

3

Wayback machine needs to know where to find content that may be scattered over various ARC
container files. An index file, e.g. an index in the CDX file format11, contains the required information.
To build this index, it is necessary to involve ARC files and crawl log files in the index building process.
From a long-term-preservation perspective, this is a problematic dependency. The ARC container
files are not self-describing; they depend on operative data (log files generated by the crawl
software) in a non-standardised manner. Web archive operators and developers know where to get
the information, and the dependency might be well documented. But there is the risk of losing
information that is essential for displaying and accessing the content.
This risk is one of the reasons why the option to migrate from ARC to the new WARC format is being
considered by many institutions. But, as often happens, what looks like a simple format
transformation at first glance rapidly turns into a project with complex requirements that are not
easy to fulfil.

In the SCAPE project, there are several aspects that, in our opinion, deserve closer attention:

1. The migration from ARC to WARC is typical done with large data sets; therefore, a solution
must provide an efficient, reliable and scalable transformation process. There must be the
ability to scale-out, which means that it should be possible to increase processing power by
using an appropriately-sized computing cluster to enable organisations to complete the
migration in a given time frame.

2. Reading and writing the large data sets comes with a cost. Sometimes, data must be even
shifted to a (remote) cluster first. It should therefore be possible to easily hook in other
processes that are used to extract additional meta-data from the content.

3. The migration from one format to another carries the risk of information loss. Measures of
quality assurance like calculating the payload hash and comparing content between
corresponding ARC and WARC instances or doing rendering tests in the Wayback machine on
subsets of migrated content are possible approaches in this regard.

4. Resolving dependencies of the ARC container files on any external information entities is a
necessary requirement. A solution should therefore not only look into a one-to-one mapping
between ARC and WARC, but it should involve contextual information in the migration
process.

The ARC to WARC migration user story represents a typical file format migration scenario in that an
instance of one file format will be converted into an instance of another format.
But, it is important to note that, because of the dependency on contextual information, this is not a
pure one-to-one mapping, as with most image file format conversions, for example. ARC and WARC
are both container formats and the reason for aggregating content in these containers is only partly a
logical aggregation, where the content belongs to the same harvest definition or the same crawl job.
There is also a technical separation between ARC files, where content is dispersed over various
container files because of a technical size limit of the ARC files. This means that even use cases about
re-arranging the ordering principle of content could be considered, even though this is not in the
scope of this deliverable.

2.2 Comparison of Web Snapshots User Story

11 http://archive.org/web/researcher/cdx_file_format.php

4

Web Archiving means capturing web content, which is per se heterogeneous, complex and highly
ephemeral. When captured, resources are stored into a standard archiving format, like the
mentioned ARC and WARC file formats, and viewable online thanks to access tools recreating the
website look and feel. Each of these steps contains challenges on its own that can have an impact on
web archive quality.
First of all, capturing of web content might seem like a simple processing step at the first, glance, but
taking a closer look, it turns out to be a complex procedure: Specific tools, so called Web Crawlers
were developed to capture resources from the web following predefined parameters and a scope by
parsing or executing web pages. Most of the web archives use open source parsing crawlers such as
Heritrix, a crawler developed by the Internet Archive12. Crawls can be selective (domain, sub domain
or even page or resource level) or large (.uk or .eu domain, for example). When crawling in a
selective manner, web archives are faced with issues such as capturing complex or hidden content. In
addition to these technical limitations, crawling at large scale also means pushing the limits when
trying to achieve completeness or to avoid temporal incoherencies. Accessing crawled resources
online by rebuilding websites’ look and feel is yet another challenge. Here again, access tools were
developed to allow navigating within web content but limitations exists such as replaying complex
content (e.g. non HTTP protocol videos or Flash animations). Therefore, crawled and long term
preserved content might not always be accessible to users.
As briefly outlined above, although improvements are constantly made in the domain of crawling
strategies and tools (execution based crawlers or tools, access tools, etc.), web content remains
extremely complex to capture and access; and these known limitations have an impact on the quality
of a web archive. For this reason, web archives developed methods and tools to perform crawl
quality assurance. Controlling the quality of crawls can be done in different ways. It can consist in
producing crawl statistics that are used to check, for instance, that a website crawled regularly is
always more or less of the same size and contains more or less the same MIME type distribution. It
can also be done by checking visually a sample of website crawled using an access tool. Tools were
also developed or adapted to perform automated or semi-automated quality assurance on crawled
websites, for instance by listing “404 Not Found” HTTP responses and triggering an immediate re-
crawl, if necessary.
Although the solutions applied so far are valuable and allow for the improvement of the quality of
web archives, they are not easy to implement on a large scale and can be very expensive to operate.
Furthermore, none of the solutions allow an automated detection of rendering issues with the same
quality as a human assessor can do. Indeed, the existing tools that allow for the comparison of crawl
figures or the spotting of missing resources on more or less – a large scale do not allow for checking
the rendering quality.
For this reason, within this work package, we have tried to leverage the visual quality assurance
performed by a human by using an image comparison tool and by integrating it to a standard web
archiving production workflow. As web archives preserve web content for long-term access and end
users, it is crucial to spot rendering issues.

2.3 File Format Identification and Characterisation User Story
Memory institutions doing web archiving usually have an implicit or explicit policy that determines
which type of material is collected. Therefore, data may be text documents in all kinds of text

12 http://sourceforge.net/projects/archive-crawler/

5

encoding, HTML content loosely following different HTML specifications, audio and video files that
were encoded with a variety of codecs, etc.
In order to make any decisions in digital preservation about mitigating the risk of losing information
contained in an archive, it is indispensable to have detailed information about the content in the web
archive, especially those pieces of information that preservation tools depend on. This information
allows the prioritisation of which type of content and which properties of content need special
attention and the planning of concrete actions to fulfil the mandate of preserving digital collections.
It is essential for all of these institutions to know precisely what this content is before any
preservation planning is undertaken. For example, web archives may contain lots of PDF documents.
If a specific version of these PDF documents is known to have renderability issues in modern PDF
rendering software, it is necessary to identify exactly the instances of PDF documents that have these
properties. If the archive contains video material, the availability of codecs for playing these videos is
essential.
In any of these cases it is necessary to know which type of content is to be handled on a coarse
granular level, like MIME-Type information, or on a fine-granular level, like DROID13 PUIDs14, for
example. It is not possible to perform a data migration without knowing exactly what kind of digital
object is encountered in the collection and what the logical and technical dependencies of the object
are.
The main issue that we are dealing with in this deliverable is how these actions can be achieved using
workflows that process large amounts of web archive content at scale. This means that coverage and
precision of identification tools as was presented in D9.115 are not in the scope of this deliverable;
instead, the focus lies in achieving good stability and runtime performance of the workflows.

3 Large-scale Web Content Testbed Solutions

In relation to the user stories presented in the previous section, this section presents the solutions to
address the requirements of the user stories in form of a data-flow oriented workflow for processing
web archive content.
As already mentioned in the introduction, compared to the previous version of this deliverable
(D15.1) the focus has changed, especially regarding the technologies and the size of the data sets
being used.
The gap analysis report16 listed the requirements and tools to be developed; this list was sorted by
level of priority assigned to the requirements gathered by the Testbeds.
The solutions presented below address the priorities related to these requirements: Section 3.1
covers the requirement to develop a workflow that is “capable of migrating ARC to WARC” (WCT2.1)
including a suggested approach for “checking that the content of the migrated WARC is the same as
the original ARC”17. Section 3.2 is about the development and integration of “a tool capable of
comparing two versions of the same web page”18. The priorities of developing "a tool capable of
unwrapping and copying the contents of ARC/WARC files into HBase" and of "validating that the files
migrated to HBASE are according to the original" have not been addressed because in the end it

13 http://digital-preservation.github.io/droid/
14 Pronom Unique Identifiers, see glossary.
15 SCAPE Deliverable D9.1
16 SCAPE Deliverable D10.2
17 SCAPE Deliverable D10.2, p. 28 (Ref. WCT2.1,WCT2.2)
18 SCAPE Deliverable D10.2, p. 28 (Ref. WCT6.1, WCT6.2)

6

made more sense to store the ARC files in HDFS instead of unpacking them and storing raw content
in HDFS/HBase. This will be explained in more detail. Section 3.3 presents workflows which address
the requirement “of doing deep characterization of ARC and WARC files”, while the optional
extension to use ffprobe19 in such a workflow to do “deep characterization of video wrapper formats
(e.g. AVI)” was not addressed.20

3.1 ARC to WARC Migration Solution

In the SCAPE project, the Apache Hadoop framework21 is an essential element of the SCAPE
Execution Platform. Hadoop is the core which carries the responsibility of efficiently distributing
processing tasks to the available workers in a computing cluster.
There were different options to implement a solution (to what) which takes advantage of software
development outcomes from the SCAPE project. The first option was using a module of the SCAPE
Execution Platform called ToMaR22, a Map/Reduce java application that allows for the easy
distribution of command line application processing on a computing cluster (in the following:
ARC2WARC-TOMAR). The second option was using a Map/Reduce application with customised
reader for the ARC format and customised writer for the WARC format so that the Hadoop
framework is able to handle these web archive file formats directly (in the following: ARC2WARC-
HDP).
Parts of the following experiment description will also be included in deliverable D18.2, which
contains the reports on the final evaluation results, especially those parts that have influenced the
workflow design for the sake of completeness.
The experiment was set up to gain evidence in order to decide between two different approaches to
developing the large-scale workflow. The main question was whether the native Map/Reduce job
implementation had a significant performance advantage compared to using ToMaR with an
underlying command line tool execution.
The reason why it was considered that the advantage might be “significant”, is that the ARC2WARC-
HDP option has an important limitation: In order to achieve the transformation based on a native
Map/Reduce implementation, the use of a Hadoop representation of a Web Archive Record is
required. This is the intermediate representation that is created between reading the records from
the ARC files and writing the records to WARC files. As the intermediate representation uses a byte
array field to store web archive record payload content, it is theoretically limited to around 2 GB due
to the Integer length of the byte array which would be a value near Integer.MAXVALUE.23 In reality,
the practical limitation regarding the manageable payload content size might be much lower
depending on hardware setup and configuration of the cluster.
This limitation would create a need for an alternative solution for records with large payload content.
And, such a separation between "small" and "large" records would possibly increase the complexity
of the application, especially when it is required to involve contextual information across different
container files in the migration process.
The implementations used to do the migration are proof-of-concept tools and therefore they are not
intended to be used to run a production migration at this stage. This means that there are the
following limitations:

19 http://ffmpeg.org/ffprobe.html
20 SCAPE Deliverable D10.2, p. 29 (Ref. WCT3.1, WCT3.2)
21 http://hadoop.apache.org/
22 https://github.com/openplanets/tomar
23 http://docs.oracle.com/javase/7/docs/api/java/lang/Integer.html#MAX_VALUE

7

1. As already mentioned, ARC2WARC-HDP comes with a file-size limit regarding the in-memory
representation of a web archive record; the largest ARC file in the data sets used as
evaluation data sets is around 300MB, therefore record-payload content can be easily stored
as byte array fields.

2. Exceptions are caught and logged, but there is no gathering of processing errors or any other
analytic results.

3. The job implementation neither includes quality assurance nor does it involve contextual
information which, as was previously mentioned, both are important aspects of the ARC to
WARC migration.

The basis of the implementations for reading web archive ARC container files and for iterating over
the records is the Java Web Archive Toolkit (JWAT)24.
As an example for a process that is used while we are reading the data, the implementations include
Apache Tika25 to identify the payload content as an optional feature. All Hadoop job executions can
therefore be used with and without payload content identification enabled.
As already mentioned, the ARC2WARC-HDP26 application was implemented as a Map/Reduce
application which is started with the following command line:

hadoop jar arc2warc-migration-hdp-1.0-jar-with-dependencies.jar \
-i hdfs:///user/input/directory -o hdfs:///user/output/directory

A wrapper Taverna workflow for this Map/Reduce application does this invocation and allows varying
the parameters on the workflow input level. See Figure 1.

Figure 1: Taverna Workflow for ARC2WARC-HDP execution, http://www.myexperiment.org/workflows/4154

The workflow illustrated here allows configuring the file system location of a jar file implementing
the Hadoop job using the “hadoop_job_jar_path” constant value. The “hdfs_input_path” input port
indicates the path to the directory that contains the ARC files, and the “hdfs_output_path” property
defines the HDFS directory where the migrated WARC files and the job output will be stored.

24 https://sbforge.org/display/JWAT/JWAT
25 https://tika.apache.org/
26 https://github.com/openplanets/hawarp/tree/master/arc2warc-migration-hdp

8

And the ARC2WARC-TOMAR workflow is using a command line Java-Implementation27 and executed
using ToMaR. One bash script28 was used to prepare the input needed by ToMaR and another bash
script29 to execute the ToMaR Hadoop job, a combined representation of the workflow is available as
a Taverna workflow illustrated in Figure 2.

Figure 2: Taverna Workflow for ARC2WARC-TOMAR execution, http://www.myexperiment.org/workflows/4144

The workflow allows processing an HDFS input directory using ToMaR. The "hdfs_working_dir" input
port is the HDFS input directory which contains the data to be processed by ToMaR. The "toolspec"
input port contains the toolspec XML describing operations that can be used (see "operation" input
port). The "operation" input port defines the operation to be used in the current ToMaR job
execution (see "toolspec" input port, an operation port used here must be defined in the tool
specification). The "hdfs_working_dir" input port defines the directory where the outputs will be
stored in a date/time-subdirectory.

The following is an example for a workflow output in HDFS:

tomarworkingdir/20140304130007/dataout
tomarworkingdir/20140304130007/joboutput
tomarworkingdir/20140304130007/tomar-controlfile.txt
tomarworkingdir/20140304130007/toolspec

The "dataout" directory contains the output data of the ToMaR process. Depending on the operation
used, this can be the result of a file format identification process or a data migration process. The
"joboutput" directory contains the Hadoop job output of the ToMaR Hadoop job. The "tomar-
controlfile.txt" file is the input file for the ToMaR Hadoop job execution. The "toolspec" directory
contains the tool specification file given by the "toolspec" input port.
A so called “tool specification” is needed to start an action in a ToMaR Hadoop which specified inputs
and outputs and the java command to be executed:

27 https://github.com/openplanets/hawarp/tree/master/arc2warc-migration-cli
28 https://github.com/openplanets/hawarp/blob/master/tomar-prepare-inputdata/scripts/prepare-input.sh
29 https://github.com/openplanets/hawarp/blob/master/tomar-prepare-inputdata/scripts/tomar-run-
hadoopjob.sh

9

All commands, such as the one displayed as text node of the command element shown Listing 1,
allow the use of a “-p” flag to enable Apache Tika to identify payload content.

Additionally to scale out the migration of ARC container files to the new WARC format, there is also
the need to find a way to make sure that the instances in the target format are valid new
representations of the original. This means that the WARC container files can be used instead of the
ARC container files to display archived web pages using the Wayback machine.
In order to render web pages based on the ARC or WARC container files, the Wayback machine
needs an index to find required archived items. One such index type is the CDX index30 which consists
of individual lines of text, each of which represents a single web document.
There is the basic assumption that except for container-file related fields, the CDX index must be the
same for both types of container formats for displaying web content to assure that the content can
be rendered correctly using the Wayback machine. In this regard, the workflow in Figure 3 represents
an executable non-scalable workflow that is used to verify if the migration works correctly on small
sample data sets.

30 http://archive.org/web/researcher/cdx_file_format.php

<?xml version="1.0" encoding="utf-8" ?>
<tool xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://scape-project.eu/tool tool-
1.0_draft.xsd"
 xmlns="http://scape-project.eu/tool"
 xmlns:xlink="http://www.w3.org/1999/xlink" schemaVersion="1.0"
 name="bash">
 <operations>
 <operation name="migrate">
 <description>ARC to WARC migration using
 arc2warc-migration-cli</description>
 <command>
 java -jar arc2warc-migration-cli-1.0-jar-with-
dependencies.jar
 -i ${input} -o ${output}
 </command>
 <inputs>
 <input name="input" required="true">
 <description>Reference to input file</description>
 </input>
 </inputs>
 <outputs>
 <output name="output" required="true">
 <description>Reference to output file</description>
 </output>
 </outputs>
 </operation>
 </operations>
</tool>

Listing 1: ToMaR Tool specification file for the arc2warc-migration executable jar

10

Figure 3: Taverna Workflow for migrating ARC to WARC and checking differences regarding the CDX index files,

http://www.myexperiment.org/workflows/4267

The workflow has an input port “input_directory” which is a local path to the directory containing the
ARC files, and an input port “output_directory” which is the directory where the workflow outputs
are created. The files in the input directory are migrated using the “arc2warc_migration_cli” tool
service component to perform the migration. The “cdx_creator_arc” and “cdx_creator_warc” tool
service components create cdx index files for both, the original ARC file and the migrated WARC file
which, subsequently, are compared by the “diff_cdx” tool service component that uses the CSV file
comparison tool csvdiff31 to compare defined columns of the two CSV files.

The creation of valid and equivalent versions of the CDX index files is a necessary condition to enable
quality control of the migration result in two respects: First, the CDX index files are compared if they
contain the same records in terms of the information used to access the records by the Wayback
machine and the checksum information of the individual record payloads. Second, the CDX index file
is used to allow selective rendering of archived web pages and to compare the rendering outcomes.
The scalable variant of this workflow executes the individual steps, as they are, ARC to WARC
migration, ARC and WARC CDX index creation, and ARC and WARC CDX index comparison separately
using ToMaR with the same executables used in the tool service components of the presented
workflow.

3.2 Comparison of Web Snapshots Solution

The solution used to conduct QA within a web archiving workflow by comparing two snapshots of a
web page relies on a tool developed by the UPMC and enhanced during the project by both the

31 http://csvdiff.sourceforge.net

11

UPMC and the IMF teams. As outlined in deliverable D15.1, the solution is strongly linked with work
accomplished by both teams as part of WP 11 (PC.WP.3 Quality Assurance Components) and WP12
(PW.WP.1 Automated Watch) of the SCAPE project. Deliverable D15.2 is therefore based on input
from both work packages (see D11.232 and D12.233).
As part of the SCAPE project, the UPMC team developed a tool, the Marcalizer34, that allowed a
visual and structural (based on an analysis of web pages DOM tree) comparison of snapshots of web
pages and that would provide a similarity score as an output.
The tool evolved since D15.1 to solve issues such as a dependency on VIPS35 (Vision-based Page
Segmentation Algorithm) for the structural comparison part, or the scalability issue that was required
to be used within a real use case workflow. The Marcalizer as described in D15.1 gave birth to several
solutions, all available as open source tools.
The Marcalizer is defined within D11.2 as a tool containing a supervised framework; the Pagelyzer36
is defined as a tool that allows for comparisons of two web pages and that provides a similarity score
as an output.
Both tools are fully described by UPMC within D11.2 and work through:

• a combination of structural and visual comparison methods embedded in a statistical
discriminative model,

• a visual similarity measure designed for Web pages that improves change detection,
• a supervised feature selection method adapted to Web archiving

The final version of the Pagelyzer tool37 was recently released and now integrates a complete
workflow that allows for taking snapshots of web pages, analyses these snapshots (visually and
structurally) and finally provides a global similarity score as an output of the visual and structural
comparison. The IMF team performed preliminary tests using this new version of the tool and is
currently working on integrating its use within the SCAPE platform for larger scale experiments.
Figure 4 below shows the related Taverna workflow.

32 SCAPE Deliverable D11.2
33 SCAPE Deliverable D12.2
34 https://github.com/lechervy/MarcAlizer
35 http://research.microsoft.com/apps/pubs/default.aspx?id=70027
36 https://github.com/openplanets/pagelyzer
37 http://scape.lip6.fr/pagelyzer_1.0.0_all.deb

http://research.microsoft.com/apps/pubs/default.aspx?id=70027
https://github.com/openplanets/pagelyzer

12

Figure 4: Taverna workflow for detecting changes in web pages and their rendering

As part of the WP12 and in order to solve performance and usability issues inherent to the first
versions of Marcalizer, the IMF team developed a wrapper application, the browser-shots tool38.
The browser-shots tool was built with the aim of performing automated visual comparisons of
snapshots of web pages within a web archive. The application orchestrates several tools and scripts
that allow a whole QA workflow to be performed automatically. The first version of the browser-
shots uses Selenium39 to automatically take snapshots of web pages combined with the first version
of the Marcalizer for the comparison of images.
Selenium was chosen among other similar frameworks as it allows the use of several browsers and
browser versions, which is a strong requirement when applying QA to web content. So far, the
browsers that have been tested are Firefox (all versions), Chrome (latest version) and Opera
(versions 11th and 12th). Selenium also allows to set as many instances as needed and to run these
in parallel, which is critical when looking at a tool that should be scalable.
The workflow is as follows:

1. Snapshots of two URLs to compare are taken using the Selenium framework. This step is
configurable depending on the user need and resources (comparison can be made with one
or several browsers).
2. Each pair is compared using the Marcalizer (this version of the tool is to be replaced by the
Pagelyzer).
3. Provide as an output a list of the similarity score of each pair of snapshots compared.

The first implementation of the browser-shots was made on a Debian Squeeze (64 bits) platform. Our
tests made on the IMF platform (3 nodes) on around 440 pairs of URLs confirmed the need to
improve the browser-shots further to make it more scalable. Indeed, the average processing time for

38 https://github.com/crawler-IM/browser-shots-tool
39 http://docs.seleniumhq.org/

13

a pair of URLs was of 16 seconds. On the Selenium side, we met robustness issues (it failed regularly
during tests) and performance issues (taking screenshots was actually time consuming).
The second implementation therefore has tried to solve or at least reduce these performance issues
by using an optimised version of the Marcalizer (any new optimised version will continue to be added
to the browser-shots). As one of the bottlenecks was due to the orchestration between tools, the
implementation was modified so that snapshots taken by the Selenium are directly sent to
Marcalizer using streams (instead of having intermediary parameters). The Selenium is also
represented as a MapReduce job running on a Hadoop cluster to parallelise the processing of the
input (list of URLs together with a list of browsers' versions).
Following this implementation, tests were made showing an improvement in terms of performance
and quality of results. The browser snapshot step and the Marcalizer comparison were reduced to 2
seconds each. Of course, as Selenium renders the web page before producing the snapshot, the
overall performance greatly depends on the size and complexity of the web pages chosen.
A larger experiment was launched on two worker nodes of the SCAPE central instance with this
enhanced implementation. The test was made on around 13 000 URLs with Firefox and Opera
browsers. Future larger experiments will be detailed in the next benchmarking deliverables of the
SCAPE project. The next steps also include testing the latest version of the Pagelyzer tool (java
version) and comparing it in terms of performance and scoring quality to the browser-shots currently
in use.

3.3 File Format Identification and Characterisation Solution

It was pointed out in the predecessor deliverable D15.1, that for a solution intending to do
identification and characterisation of web content at scale, it was crucial to find an efficient way to
unpack content from ARC files and apply content identification.
However, apart from the approach that unpacks a file in order to apply tools, there was also the
option to read ARC container files and access file streams of the web content payload records
without having to make them available as files beforehand.
In the following sections, several workflows are presented which represent different possible
approaches, each depending on the properties of the tool that is used to perform the file format
identification or characterization task.

3.3.1 Unpack ARC container files and apply file format identification using DROID

In deliverable D15.1, several alternatives for ARC unpacking were presented40. One obvious option
was to use unpacking as the first step in developing large scale workflows that make the individual
files contained in the ARC container file available in the file system first, in order to run the DROID
identification subsequently. The ARC Unpacker had been identified as the best candidate for this
purpose.41
Because of the fact that the SCAPE Execution Platform is based on Apache Hadoop, we must take
into consideration that Hadoop’s strength is the processing of very large files. If the file format
identification is applied to a set of files originating from an office or web context, as it is naturally the
case in a web archiving context, we are usually dealing with many small files, like HTML files, PNG or
JPEG images. There might also be large multimedia files, but large does not necessarily mean
adequate for Hadoop processing. It must be possible to split the input files of a Hadoop job in to

40 See SCAPE deliverable D15.1, section 2.6, p. 14.
41 See SCAPE deliverable D15.1, section 2.6, p. 15.

14

independent parts so that they can be processed in parallel during the Map phase of a MapReduce
job.
In this first approach the ARC container files are completely unpacked to HDFS and the individual files
must be are being made available as complete and undivided units.
In order to achieve efficient processing using the SCAPE Execution Platform, it was essential to
determine how small files would ideally be processed using the Hadoop framework. If the small files
would have been made available in the Hadoop Distributed File System (HDFS) and defined as input
for a Map function performing the file identification, Hadoop would create one task per file which –
given the additional time required for initiating a task – would have resulted in a bad runtime
performance.
One possible approach to overcoming this obstacle is to put references to all files that are going to be
processed into a text file and then use this text file as input for the Hadoop job. This requires that all
worker nodes of the cluster can access the referenced file paths, e.g. by adding mount points to the
cluster nodes so that a file path references the same file on each cluster node. Using this method the
Hadoop framework does not generate one task per file, but the size of the task only depends on the
split size of the input text file, i.e. all file paths contained in a 64 Megabyte section (default split size)
of the text file.
However, using DROID as it was released in version 6.1.3 and with the Pronom Signature File version
6742 for certain file formats (e.g. PDF), the files were accessed on the file system using a file path
specified in a metadata object assigned to the file.43

42 http://www.nationalarchives.gov.uk/documents/DROID_SignatureFile_V67.xml
43 For example, the BinarySignatureIdentifier used file path related metadata of the RequestMetadata object.
The evidence was given by differences regarding the identification results if the file path of the
RequestMetadata object was not pointing to an existing PDF file. See https://github.com/digital-
preservation/droid/blob/master/droid-
core/src/main/java/uk/gov/nationalarchives/droid/core/BinarySignatureIdentifier.java

15

Figure 5: Taverna Wrapper workflow for a Droid Identification Hadoop job,

http://www.myexperiment.org/workflows/4222

The Taverna workflow shown in Figure 5 represents a Hadoop job that takes a list of HDFS directories
containing text files with paths to ARC container files as input. The main workflow is a wrapper
around the nested workflow “ONB_Droid_Identification”, which uses an HDFS directory containing
text files with absolute paths to ARC container files as input. As shown in Figure 6, the number of
parallel jobs for the nested workflow is set to 1; this way the Hadoop job processing can be split into
several jobs that are executed sequentially in case this is required due to limited memory or local
storage capacity available on the cluster nodes.

16

Figure 6: Configuration of the number of parallel jobs for the nested workflow “ONB_Droid_Identification”,,

http://www.myexperiment.org/workflows/4222

The files are unpacked to a temporary directory on the worker nodes in order to apply DROID
identification subsequently to the individual files.
The workflow component “hawarp_mapunpack2temp_identify” is based on the Hawarp44 software
module “unpack2temp-identify”45 which is not limited to DROID but can be used to apply a set of
identification tools to the unpacked file items in parallel.
The major drawback of the approach presented by this workflow is that there is no benefit of “data
locality” which is one of the most important features of Apache Hadoop. “Data locality” refers to the
fact that Hadoop tries to assign map tasks to nodes that are close to the data, i.e. the processing
cores are on the same machine as the hard disk storing the data blocks. As data is stored
redundantly46, Hadoop might be able to choose between alternative nodes that have a certain data
block available and then select the one where the task tracker has less workload. However, if data is
unpacked to the local file system of one worker node, it is not possible to take advantage of this
benefit. This way the workflow only provides the means to run the unpacking of ARC files and the
identification process in parallel.
An alternative to this approach is to apply DROID directly on file streams. In this case it would not be
required to unpack the ARC files completely beforehand. This comes also with the advantage that in
most cases it is not required to read the complete file stream in order to detect the file format. At
least for simple and commonly used file formats and in use cases where file streams contained in
container files are not going to be analysed, it is sufficient to read the first byte chunks to be able to
determine the format reliably. But for this purpose, the DROID application needs to be adapted,
which is the approach of Nanite, a software tool that uses the DROID API and which will be presented
in the next section 3.3.2.

44 https://github.com/openplanets/hawarp
45 https://github.com/openplanets/hawarp/tree/master/unpack2temp-identify
46 The replication factor in the HDFS configuration determines how many copies of data blocks exist in the file
system. The default configuration is replication factor 3.

17

3.3.2 File format identification using Nanite (DROID API)
Nanite47 is an identification/characterisation tool for web archives, written in Java that brings
together several different technologies and takes a very different approach to using ToMaR (as
described below). Initially developed within SCAPE, it has an easy to use API around DROID that is
both fast and allows for streams of data to be identified (rather than just files). These features make
it well-suited for integration into a MapReduce program. Nanite currently consists of two main
modules;

1. Nanite-Core: an API for DROID48
2. Nanite-Hadoop: a native MapReduce program for identification/characterisation

Nanite can also make use of other identification/characterisation modules such as;
● Libmagic-jna49: identification according to `file` command’s identification data
● Apache Tika: identification
● ProcessIsolatedTika50: characterisation using Apache Tika51

Nanite uses the alternative method for accessing files within ARC/WARC files as described above, i.e.
it does not unpack the contents of the files before use. It makes use of a Hadoop RecordReader that
can directly open the ARC files and operate on its contents, without an intermediate step via the file
system. As all of the libraries used by Nanite are written in Java, data is easily passed to them by
InputStreams.
The identification and characterisation tools that will be used can be configured at runtime via a
properties file in the jar.
A Mapper is responsible for running through one ARC file, with as many Maps executed as there are
files contained within the ARC. A typical runtime of a Mapper is approximately five minutes. The
setup of Nanite-Core, ProcessIsolatedTika, etc. forms part of that runtime; however, the setup time is
small compared to the time it takes to run all the Maps.

A high level overview of the execution workflow is as follows:

1. A list of ARC/WARC files is passed to Nanite-Hadoop
2. A Mapper is initialised, one per input file
3. A Map is executed, once for each file inside the archive

a. The year the file was harvested is extracted
b. The MIME type the server sent for the file is extracted
c. The file extension is derived from the URI, if possible
d. The default settings then use Nanite-Core, Tika and ProcessIsolatedTika to identify

and characterise the file52

47 https://github.com/openplanets/nanite
48 http://www.nationalarchives.gov.uk/information-management/our-services/dc-file-profiling-tool.htm
49 https://github.com/openplanets/libmagic-jna-wrapper
50 https://github.com/willp-bl/ProcessIsolatedTika
51 Web archives are almost certain to contain data that is corrupt and otherwise damaged, this places stresses
on software and it can make Tika prone to crashing or hanging. To ensure that the Nanite process does not fail
due to its dependencies failing, we created a library that transparently uses Tika in a separate operating system
process. This ensures that the JVM Nanite is running in is not affected by crashes in Tika. A similar process
could be used to run FITS, if it provided a REST interface. Other approaches to using Tika for characterisation
were considered and tested , with the process isolation method deemed most robust
(http://www.openplanetsfoundation.org/blogs/2014-03-21-tika-ride-characterising-web-content-nanite).

18

4. The Reduce phase creates a tab separated values file that contains the file extension, year of
harvest and various MIME types, along with the number of times each record line is
produced

Testing has shown that there are be differences in how files are identified by various tools. Nanite-
Core (and therefore DROID) will only identify files that exactly match its signatures. This means that
if, for example, a JPG file had no end of file marker (as required by the specification) then it will not
be identified by DROID, whereas Tika will recognise the file by header alone. Web archives are
certain to contain files that do not adhere to specifications, and thus DROID is unable to identify
those files. This has been reported to the DROID developers53 but using DROID to identify files from
a web archive falls outside their use case.
Nanite currently uses Tika for characterisation, however, support could potentially be extended to
FITS. Characterisation output from Tika can be loaded in to c3po54, but this has not been tested.
Initial testing has indicated that identifying and characterising files using Nanite is fast and its
approach to be promising55. It should be noted that Nanite makes use of fewer SCAPE components
than other approaches, in favour of tighter integration with Hadoop as a native MapReduce job.
Therefore although it does not integrate with other SCAPE projects as well, it does offer very fast
execution.
It would be possible to integrate other characterisation tools, such as FITS into Nanite, using the
same method as ProcessIsolatedTika. For this to happen FITS, or other tools, would need to provide
a REST, or other API at runtime.

3.3.3 File format characterisation using Fits

FITS (File Information Tool Set)56 was chosen as a test case for ToMaR for two reasons: First, the FITS
approach of producing “normalised” output on the basis of various file format characterisation tools
makes sense, and therefore, enabling the execution of this tool on very large data sets will be of
great interest for many people working in the digital preservation domain. Second, the application is
challenging from a technical point of view, because it starts several tools as sub-processes. Even if a
process takes only one second per file, we have to keep in mind that web archives often have billions
of files to process.
The workflow in Figure 7 is an integrated example of using several SCAPE outcomes in order to create
a profile of web archive content. It leverages existing digital preservation functionality and develop a
data processing chain starting by unpacking the content making it available to ToMaR, use ToMaR to
apply the FITS characterisation and then ingest the FITS characterisation output into C3PO57 in order
to allow browsing the results in a web-based application and to see aggregated statistics.

52 When ProcessIsolatedTika is used it stores the characterisation output in a SequenceFile in HDFS, one per
input archive. So 100 input files will result in 100 output files. One test showed that the size of this
(compressed) output was approximately 1/80th of the total size of the input archives.
53 https://groups.google.com/forum/#!topic/droid-list/sUCwaO1k1kk
54 https://github.com/openplanets/c3po
55 http://wiki.opf-labs.org/display/SP/EVAL-BL-WCT-01
56 https://code.google.com/p/fits/
57 https://github.com/peshkira/c3po

19

Figure 7: Web Archive FITS Characterisation using ToMaR, available on myExperiment:

www.myexperiment.org/workflows/3933

The inputs in this workflow are defined as follows:

● “c3po_collection_name”: The name of the C3P0 collection to be created.
● “hdfs_input_path”, a Hadoop Distributed File System (HDFS) path to a directory which

contains text file(s) with absolute HDFS paths to ARC files.
● “num_files_per_invocation”: Number of items to be processed per FITS58 invocation.
● “fits_local_tmp_dir”: Local directory where the FITS output XML files will be stored

The workflow uses a Map-only Hadoop job59 to unpack the ARC container files into HDFS and creates
input files which subsequently can be used by ToMaR.60 This job is invoked from the Spacip61 Taverna
tool service component. After merging the Mapper output files into one single file
(MergeTomarInput), the FITS characterisation process is launched by ToMaR as a MapReduce job.
ToMaR uses an XML tool specification62 document which defines inputs, outputs and the execution
of the tool. The tool specification document for FITS63 used in this experiment defines two
operations, one for single file invocation, and the other one for directory invocation.
FITS comes with a command line interface API that allows a single file to be used as input to produce
the FITS XML characterisation result. But if the tool were to be started from the command line for

58 https://code.google.com/p/fits/
59 https://github.com/openplanets/hawarp/tree/master/tomar-prepare-inputdata
60 https://github.com/openplanets/tomar
61 Spacip has now been integrated as a module in hawarp and is available as the module tomar-prepare-
inputdata at https://github.com/openplanets/hawarp/tree/master/tomar-prepare-inputdata
62 https://github.com/openplanets/scape-toolspecs/blob/master/toolspec.xsd
63 https://github.com/openplanets/hawarp/blob/master/tomar-prepare-inputdata/toolspecs/fits.xml

20

each individual file in large a web archive, the start-up time of FITS including its sub-processes would
accumulate and result in a poor performance. Therefore, it comes in handy that FITS allows the
definition of a directory which is traversed recursively to process each file in the same JVM context.
ToMaR supports this functionality by defining an operation that processes a set of input files and
produces a set of output files.
The question how many files should be processed per FITS invocation can be addressed by setting up
a Taverna experiment like the one shown in Figure 8. The workflow presented above is embedded in
a new workflow in order to generate a test series. A list of 40 values, ranging from 10 to 400 in steps
of 10 files to be processed per invocation is given as input to the “num_files_per_invocation”
parameter. Taverna will then automatically iterate over the list of input values by combining the
input values as a cross product and launching 40 workflow runs for the embedded workflow.

Figure 8: Wrapper workflow to produce a test series, available on myExperiment:

www.myexperiment.org/workflows/4229

Processing larger data sets can be done in a similar manner to the one that is shown in Figure 8, only
that a list of input directory HDFS paths determines the sequence of workflow runs and the number
of files per FITS invocation is set as a single fixed value.

21

4 Conclusion

In this deliverable the large-scale workflow development outcomes of the Web Content Testbed
(TB.WP.1) have been presented. The focus of this presentation lied on the question how the SCAPE
Execution Platform was used to achieve the processing of very large data sets. Furthermore, aspects
of interoperability of the preservation components developed in the PC sub-project in the context of
various forms of the SCAPE Execution Platform (i.e. the so called local instances at memory
institutions) were of primary interest. The goal was to show how different types of preservation
components, from the areas of file format identification and characterisation, file format migration,
and quality assurance, can be used together in large-scale data-flow oriented workflows.
At the moment of writing this deliverable, concrete evaluation results are still in the process of being
created and the results are going to be presented in SCAPE deliverable D18.2. Nevertheless, from a
general point of view, a positive conclusion can be drawn here regarding the use of the SCAPE
Execution Platform which together with the individual tools allowed scaling out the various types of
digital preservation tasks.
To highlight only some of the SCAPE outcomes, the toolset on top of the Apache Hadoop framework
has proven to be a solid basis to ensure stability of long-running processes, hardware-failure
resilience, and provided an inexpensive option to keep large amounts of data securely stored by
keeping data redundantly and allowing immediate processing of large data sets.
The development of workflows undertaken in this work package helped defining the requirements
for adapting the APIs and interfaces of legacy digital preservation tools to be able to use them in the
context of the SCAPE Execution Platform.
The Taverna Workflow design and execution workbench turned out to be of great use in the phase of
finding the appropriate processing tool chain and allowed a detailed feasibility study when evaluating
alternative approaches and the tuning of parameters of the tools.
The SCAPE toolwrapper64 allowed to easily deploying a large number of digital preservation
components on a SCAPE Local Instance on various nodes of the computer cluster, because in certain
digital preservation scenarios it is required that each individual node is able to execute a specific
preservation component.
C3PO as a web content profiling tool based on FITS characterisation results applied to web content
showed a promising new direction in achieving detailed information about the content stored in
large web archives and a way to make use of the extracted information for the purpose of doing
preservation planning. The integration of these components with Planning and Watch (PW)
outcomes allows memory institutions to make use of the extracted information for preservation
planning in a standardised manner using well-defined digital preservation measures and digital
object properties.

64 https://github.com/openplanets/scape-toolwrapper

22

5 Glossary

Term Abbreviation Definition

Action Service An action service is a type of a digital preservation service that
performs some kind of action on a digital object, e.g. migrating the
object to a new file format.

Apache Hadoop Framework for processing large data sets on a computer cluster.
See http://hadoop.apache.org

Apache Tika Software for identifying file formats.

See https://tika.apache.org/

ARChive format ARC ARC is a lossless data compression and archival format which was
originally used by the Heritrix Web Crawler developed by the
Internet Archive.
See http://archive.org/web/researcher/ArcFileFormat.php

CDX file format Index file of ARC (see corresponding glossary entry) or WARC (see
corresponding glossary entry) container files used by the Wayback
machine (see corresponding glossary entry) to render archive web
pages.
See http://archive.org/web/researcher/cdx_file_format.php

CDX index See CDX file format.

Characterisation
Service

 A characterisation service is a type of a digital preservation service
that extracts any kind of information from a digital object, as an
identifier or file related properties, for example.

Data locality “Data locality” refers to the fact that Hadoop tries to assign map
tasks to nodes that are close to the data, i.e. the processing cores
are on the same machine as the hard disk storing the data blocks.

DROID Software developed by the National Archives (UK) to determine a
unique file format identifier (PUID, see corresponding glossary
entry). DROID is a software tool developed by The National
Archives (UK) to perform identification of file formats.
See http://digital-preservation.github.io/droid/

23

Execution
Platform

EP An extensible infrastructure for the execution of digital
preservation processes on large volumes of data (using a
combination of Apache Hadoop and Taverna)

(SCAPE)
Experiment
Evaluation

 Findings and results, both measurable and non-measurable, of a
particular execution of an Experiment, within the Testbed sub-
package.

(SCAPE)
Experiment

 A unit of work that combines a dataset, one or more preservation
components, a workflow and a processing platform that can be
used to evaluate SCAPE technology and provide evidence of
scalable processing

File Format
Characterisation

 The process of determining the properties of a file format, for
example, the bit depth, colour space, width of an image, the
frames per second of a video, etc.

File Format
Identification

 The process of determining the identity of a file format instance,
typically by assigning an identifier, as the PUID (see corresponding
glossary entry) as a precise identifier or a MIME Type (see
corresponding glossary entry) identifier as a vague file type
identifier.

Hadoop See Apache Hadoop.

HDFS HDFS Hadoop Distributed File System. This is Hadoop’s file system which
is designed to store files across machines in a large cluster.

HBase HBase Distributed database on top of Hadoop/HDFS, see
https://hbase.apache.org

Heritrix Web
Crawler

 Web crawler engine used to harvest content from the internet and
store it in a web archive. The Heritrix Web Crawler was originally
developed by the Internet Archive (see corresponding glossary
entry).
See https://webarchive.jira.com/wiki/display/Heritrix/Heritrix

Internet Archive The Internet Archive is a digital library which provides permanent
storage of and free public access to collections of digitized
materials, including websites, music, moving images, and nearly
three million public-domain books.
See https://archive.org

24

Map/Reduce MR A programming paradigm for processing large data sets using a
parallel, distributed algorithm on a SCAPE cluster.

MIME Type A standard identifier used on the Internet to indicate the type of
data that a file contains.

MyExperiment A web application to allow users to find, use and share scientific
workflows and other Research Objects, and to build communities
around them.

PRONOM PRONOM is an information system about data file formats and
their supporting software products.
See https://www.nationalarchives.gov.uk/PRONOM

Pronom Unique
Identifier

PUID The PRONOM Persistent Unique Identifier (PUID) is an extensible
scheme for providing persistent, unique and unambiguous
identifiers for records in the PRONOM registry. Such identifiers are
fundamental to the exchange and management of digital objects,
by allowing human or automated user agents to unambiguously
identify, and share that identification of, the representation
information required to support access to an object. This is a virtue
both of the inherent uniqueness of the identifier, and of its binding
to a definitive description of the representation information in a
registry such as PRONOM.
From:
http://www.nationalarchives.gov.uk/aboutapps/pronom/puid.htm

Pronom
Signature File

 Signature files are generated by PRONOM (see corresponding
glossary entry) and used by DROID (see corresponding glossary
entry) for file format identification. The signature file contains a
subset of the information from the PRONOM knowledge base
required by the DROID software to perform the file format
identification.
See
https://www.nationalarchives.gov.uk/aboutapps/pronom/droid-
signature-files.htm

Preservation
Component

PC See SCAPE Component

Quality
Assurance
Component

 A Quality Assurance Component is used to determine a quality
measure related to the outcome of applying an Action Service (see
corresponding glossary entry) to a digital object.

25

Scalable
Preservation
Environments

SCAPE An EU funded project developing scalable services for the planning
and execution of institutional preservation strategies on an open
source platform that orchestrates semi-automated workflows for
large-scale, heterogeneous collections of complex digital objects.

SCAPE
Characterisation
Component

 Characterisation components are a family of SCAPE Components
(defined to wrap tools produced in WP9) that compute one or
more properties of a single instantiated digital object or file. The
output ports that produce measures are always annotated with
the metric (in the SCAPE Ontology) that describes what the
component computes.

SCAPE
Component

 SCAPE components are Taverna Components, identified by the
SCAPE Preservation Components sub-project, that conform to the
general SCAPE requirements for having annotation of their
behaviour, inputs and outputs. SCAPE components may be stored
in the SCAPE Component Catalogue.

SCAPE Local
Instance

 The local instance in the SCAPE project is an environment in a
memory institution where the SCAPE Execution Platform together
with SCAPE Preservation Components is deployed.

SCAPE QA
Component

 QA components are a family of SCAPE Components (defined to
wrap tools produced in WP11) that compute a comparison
between two instantiated digital objects or two files. They produce
at least one output that has a measure of similarity between the
inputs, and that output is annotated with the metric (in the SCAPE
Ontology) that describes the nature of the similarity metric.

SCAPE Story A short and succinct high-level statement of the preservation issue
encountered by a partner institution.

Selenium Selenium is a software framework to simulate and automate a
great variety of web browsers.
See http://docs.seleniumhq.org/

Taverna
Components

 Taverna components are Taverna workflow fragments that are
stored independently of the workflows that they are used in, and
that are semantically annotated with information about what the
behaviour of the workflow fragment is. They are logically related
to a programming language shared library, though the mechanisms
involved differ.

26

Taverna components are stored in a component repository. This
can either be a local directory, or a remote service that supports
the Taverna Component API (e.g., the SCAPE Component
Catalogue). Only components that are stored in a publicly
accessible service can be used by a Taverna workflow that has
been sent to a system that was not originally used to create it.

Taverna
Workbench

 The Taverna Workbench is a desktop application for creating,
editing and executing Taverna workflows.

Taverna
Workflow

 A Taverna workflow is a parallel data-processing program that can
be executed by Taverna Workbench or Taverna Server. It is stored
as an XML file, and has a graphical rendering.

Toolspec An XML file written to a standard API that contains details of how
to execute a tool for a particular purpose; for example txt2pdf
might define how to use a command line tool to convert text to
pdf. Toolspecs can have different types such as migration or QA.

Toolwrapper The toolwrapper is a Java tool developed in the SCAPE Project to
simplify the execution of the following tasks: Tool description
(through the toolspec); Tool invocation (simplified) through
command-line wrapping; Artefacts generation (associated to a tool
invocation, e.g., Taverna workflow); and Packaging of all the
generated artefacts for easier distribution and installation

(SCAPE) User
story

 A user story, in the context of the SCAPE Testbeds, is a description
of a digital preservation issue related to a concrete data set that is
used to derive requirements for tool development.

Wayback
Machine

 In the context of web archiving, the term Wayback Machine refers
to a software used to render archived web pages, originally
developed by the Internet Archive (http://archive.org).

Web Archive
Record

 Information unit contained in an ARC (see corresponding glossary
entry) or WARC (see corresponding glossary entry) container file.
This information unit, can hold, for example, the record payload
(bitstream of HTML file or image) together with the HTTP response
metadata and some additional metadata related to the record
(date, checksum, etc.).

Web ARChive
file format

WARC The WARC (Web ARChive) file format offers a convention for
concatenating multiple resource records (data objects), each
consisting of a set of simple text headers and an arbitrary data

27

block into one long file. See http://bibnum.bnf.fr/WARC/.

Web Crawler Software used to capture and store web pages used by Web
Archiving institutions to build their archives.

Web Content
Testbeds

WCT The Web Content Testbed is one of the Testbeds of the SCAPE
project. The Testbeds are represented by memory institutions
holding large data sets that are used to test the applicability of
tools, workflows, and solutions developed in the SCAPE project.

Web Snapshot The image capture of a web page that is taken when a web page is
rendered in a web browser.

