

This work was partially supported by the SCAPE Project. The SCAPE project is co-funded by the
European Union under FP7 ICT-2009.4.1 (Grant Agreement number 270137).
This work is licensed under a CC-BY-SA International License

Workflow modelling
environment

Authors
Donal Fellows (University of Manchester)

January 2014

http://creativecommons.org/licenses/by-sa/4.0/

iii

Table of Contents

1 Introduction .. 1

2 Workflow-modelling Environment .. 1

2.1 Features ... 2

2.2 Availability ... 3

3 Execution Engine .. 3

3.1 Features ... 4

3.2 SCAPE Execution Service Extension Prototype ... 5

3.2.1 Architecture Summary .. 5

3.2.2 Transformation Engine ... 6

3.2.3 REST API Description ... 9

3.2.4 Future Work: Enhancement with PPL ... 10

3.3 Availability ... 11

4 Glossary .. 11

1

1 Introduction
The SCAPE project has selected Taverna as the workflow system for describing preservation actions
to be enacted. Taverna workflows consist (in the version 2 series of software releases) of XML docu-
ments (typically stored in files with a .t2flow filename extension) that describe the contents of the
workflow, in particular the processing elements in the workflow and the links between them that
direct the flow of data. Though there are many ways in which an XML document may be produced,
we provide a Workflow Design tool — the Taverna Workbench, see Section 2 — that allows the crea-
tion of workflows using a drag-and-drop graphical layout system.

We also provide an execution engine for Taverna workflows, see Section 3. Though the core of this
execution engine is incorporated into the Workbench so that users may try out their workflows to
see if they perform as expected, the Workbench is known to not scale up to very large executions
due to the need to provide live feedback of the progress of executions via a GUI. We therefore also
provide Taverna Server, a specialized execution engine that clients can access via a web-service inter-
face. Taverna Server does not provide any graphical interface, instead focusing on providing a clean
interface for running user-supplied workflows. We are enhancing Taverna Server with support for
execution of Preservation Action Plans, as defined in WP14; see Section 3.2 for more details.

2 Workflow-modelling Environment
The Taverna Workbench 2.5 is a stand-alone Java application. It consists of two principal aspects, the
workflow design perspective, and the workflow results perspective.

Figure 1: Taverna Workbench Design Perspective

2

The design perspective (see Figure 1) comprises a graph layout panel on the right side of the screen,
and a stacked pair of panels on the left side of the screen: the service panel and the explora-
tion/details panel. The graph layout panel provides the main user view of the workflow, allowing for
direct manipulation of the elements of the workflow (i.e., the processors, the input ports, the output
ports, and the links between them). The exploration/details panel provides an alternate tree-
structured view of the workflow on its execution tab, while the details tab allows a user to find out
more information about the particular configuration of a workflow element as well as giving the abil-
ity to configure advanced features of that element (e.g., how many times it may be executed in paral-
lel); the final tab of that panel provides a validation report, allowing the user to find problems in their
workflow prior to running it.

Figure 2: Taverna Workbench Results Perspective

The results perspective (see Figure 2) is the other main view in Taverna Workbench, and is used
when a running workflow is being viewed or the results of a workflow run are being studied. There
are three main areas. The top-left is a panel used to select which workflow run is being viewed, the
top right panel shows the workflow run in question (either graphically or in tabular form), and the
bottom panel allows examination of the inputs and outputs, either of the overall workflow or (if
provenance capture is enabled) of a processor in the workflow. For compound values (e.g., lists or
lists of lists) the bottom panel is divided into two parts, the left allowing the selection of which value
in the compound is to be studied, and the right allowing viewing of the specific leaf value. For simple
leaf values, the right side is expanded to occupy the whole of the bottom panel.

2.1 Features
The key feature of the Taverna Workbench 2.5 over previous releases is the integrated support for
creating and working with Components. Components are reusable user-defined high-level processors
for use in workflows, where the components are defined in terms of a sub-workflow that is held in a
searchable repository.

3

The other major feature of Taverna Workbench 2.5 is the interaction service, but this was not devel-
oped by SCAPE and is not used in SCAPE workflows.

Aside from these major features, there have also been a number of minor improvements to enhance
the stability and scalability of the workbench, several new processor service types have been added
(e.g., WebDAV support) and a number of processor service types (notably the Biomart, Biomoby and
Soaplab service providers) have been removed on the grounds that they are expensive and very spe-
cific to a particular community (bioinformatics for genomics). It also includes the various SCAPE
Component families in the service panel by default.

2.2 Availability
Taverna Workbench 2.5 is available for download from the Taverna website.

http://www.taverna.org.uk/download/workbench/2-5/digital-preservation/
The user manual for Taverna Workbench is a separate document.

http://dev.mygrid.org.uk/wiki/display/taverna/User+Manual
A guide on how to use and create components using the Taverna Workbench is online.

http://www.slideshare.net/DonalFellows/scape-components-bootcamp
The source code for Taverna Workbench is on Google Code.

https://code.google.com/p/taverna/source/browse/taverna/products/net.sf.taverna.t2.taverna
-workbench/trunk

3 Execution Engine
Taverna Server 2.5.3 is an execution engine that takes user-supplied Taverna workflows and enacts
them against supplied inputs, yielding the outputs of the workflow and providing descriptions of the
activity that took place during the execution.

Deployments of Taverna Server 2.5.3 provide a number of service interfaces:

• Standard REST
• Standard SOAP
• Administrator REST
• Administrator HTML
• Administrator JMX

We are also in the process of extending Taverna Server to not just provide generic workflow enact-
ment, but also to support specifically the kinds of workflows found in SCAPE. This is done through
directly supporting an additional interface, the SCAPE Execution Service interface (a RESTful API),
which allows Taverna Server to directly accept and enact SCAPE Preservation Action Plan documents.
The support for this interface is on a custom branch of the source code of Taverna Server (the
scape-execution-interface branch). This branch is derived from Taverna Server 2.5.3, and
also supports all the features of Taverna Server 2.5.3.

Taverna Server supports this interface by transforming a Preservation Action Plan (supplied by PLATO
via the Plan Management Service) into a fully enactable workflow. It then feeds that into the execu-
tion engine inside Taverna Server. We describe this in more detail in Section 3.2 below.

http://www.taverna.org.uk/download/workbench/2-5/digital-preservation/
http://dev.mygrid.org.uk/wiki/display/taverna/User+Manual
http://www.slideshare.net/DonalFellows/scape-components-bootcamp
https://code.google.com/p/taverna/source/browse/taverna/products/net.sf.taverna.t2.taverna-workbench/trunk
https://code.google.com/p/taverna/source/browse/taverna/products/net.sf.taverna.t2.taverna-workbench/trunk

4

3.1 Features
Taverna Server 2.5.3 has a substantial number of features over Taverna Server 2.4 (the state of the
service execution engine prior to the SCAPE project contributing effort). The key features are:

• Support for components
• Support for interactions (developed outside of SCAPE)
• Access to workflow logs
• Access to resource usage descriptions
• Access to provenance data

The features of the Taverna Server 2.5.3 distribution are discussed at more length in its user manual.

Figure 3: Summary of Architecture of Taverna Server

The architecture of Taverna Server 2.5.3 (see Figure 3) is substantially similar to that of previous ver-
sions of Taverna Server; the server overall consists of the T2Server webapp (the front-end engine), a
secure fork engine, a local worker process that runs in a privilege-separated configuration as the user
who submitted the workflow, and a workflow engine process that does the execution (so that any
failures due to erroneous workflows only affect a single workflow run, not the whole service). The
principal differences are in that the Workflow Engine Core has been enhanced with extra capabilities,
the Local Worker exerts tighter control (and more customizable) over the resources used by the
workflow engine core, and the provenance is now exposed as an explicit part of the workflow run
results. These changes substantially enhance the scalability of the overall system, as well as allowing
clients to discover more exactly what their code actually performed.

The other key change is that the build mechanism for Taverna Server has been substantially en-
hanced so as to reduce the overhead associated with starting a workflow run. This is done by pre-
stressing the workflow engine core so that its internal caches can be constructed prior to packaging
of the overall Taverna Server for distribution, rather than having those caches constructed upon in-
vocation of each workflow run.

`

Servlet Container
(Tomcat 6)

T2Server
Webapp

(Apache CXF) Fo
rk

/S
et

ui
d

(s
in

gl
et

on
)

Database
(Derby)

Local Worker
(1 per user)

Workflow Engine
Core

(1 per workflow
run)

User
Filestore

Secured RMI
Registry

JRMP JMX

 Cl
ie

nt

jconsole
/jvisualvm

SOAP/
REST

Pr
oc

es
s i

nv
oc

at
io

n

Pr
oc

es
s i

nv
oc

at
io

n

Pr
oc

es
s i

nv
oc

at
io

n

Provenance
Database

5

3.2 SCAPE Execution Service Extension Prototype
The prototype of Taverna Server for SCAPE supports the SCAPE Execution Service interface, allowing
the submission of a Preservation Action Plan document (PAP, produced by PLATO and stored in the
Plan Management Service; see D4.1 and WP14) to the service. The PAP contains within it a descrip-
tion of a collection of digital objects, a workflow describing the transformation operation (or opera-
tions) to apply to each of those digital objects, and optionally a definition of how to automatically
assess whether the transformation was successful. The SCAPE Execution Service interface states that
the PAP is submitted by POSTing it to a REST endpoint and that once the results of the processing are
available, a notification is sent back to the Plan Management Service.

3.2.1 Architecture Summary
A Preservation Action Plan, submitted to Taverna Server’s SCAPE Execution Service interface, is en-
acted as follows (see Figure 4):

1. Transforming the workflow in the plan into an executable form (see Section 3.2.2 below),
2. Instantiating that workflow as a workflow run object within the Taverna Server execution

platform,
3. Arranging for the other parts of the preservation action plan to become workflow run inputs,
4. Setting the plan executing,

a. This in turn will cause the digital objects to be retrieved from the repository,
b. The transformations and analyses to be applied to them,
c. The results to be assessed,
d. Successful transformations to be staged back to the repository, and
e. A notification of success or failure sent to the Plan Management Service. (This will

cause the result report, together with any provenance traces and resource usage de-
scriptions, to be transferred out of the Taverna Server installation.)

5. Finally, the workflow run is deleted, along with all associated resources, sometime after the
run has finished executing. This happens either automatically after a timeout, or when the
run is explicitly deleted.

Figure 4: Overall Model of Execution of SCAPE Preservation Action Plans in Taverna Server

We plan to enhance Taverna Server with the PPL by using the PPL/Hadoop as an alternative execu-
tion strategy in step 4 above; the PPL will be applied to the transformed workflow and the result

Submit

PAP

Enhance
to Full WF

Prepare
Inputs

Execute
Publish
Results

Structure
Workflow Taverna Server

Execution Core

6

enacted on the Hadoop platform. From an external perspective, the use of the PPL/Hadoop will be
transparent.

3.2.2 Transformation Engine
Because the workflow in a Preservation Action Plan only describes the transformations and meas-
urements to be applied to a single digital object, it is necessary to transform the PAP workflow into a
workflow that can be enacted. This Enactment Workflow has the PAP workflow as a sub-workflow of
itself, and adds in the iteration over the overall specified collection of digital objects, the access to
the repository holding the digital objects, and the preparation of a report describing whether each of
the transformations was successful. Though it is a slight oversimplification, the PAP workflow is effec-
tively the Map part of a logical MapReduce job, and the Enactment Workflow adds a common Re-
duce part.

To do this processing, the workflow within the PAP (see Figure 5) is injected into an outer workflow
— the Structure Workflow (see Figure 7) — along with some extra utility components to form a new
workflow, the Enactment Workflow (see Figure 8). This Enactment Workflow is then executed
through the Taverna Server engine, using the non-workflow parts of the PAP as inputs to the work-
flow. It is a key assumption of this process that the results of applying a transformation to one digital
object should in principle have no effect on the other digital objects to be transformed; though this is
not going to be true for all possible transformations, this does describe a significant fraction of the
transformations used in practice and makes the overall process complexity be capable in theory of
linearly scaling with the number of objects to be transformed. Transformations that require all ob-
jects to be compared with all others are, in contrast, clearly going to be much harder to make scale
using automatic techniques.

The execution interface is implemented as an extra REST endpoint supported by the T2Server
Webapp part of Taverna Server (see Figure 3). The implementation of the execution interface in-
vokes the transformation engine (described in more detail below) before injecting the result into the
lower-level implementation engine for full enactment.

Figure 5: A simple Preservation Action Plan workflow example

The key feature of a PAP from the perspective of the execution injection system (a form of compila-
tion transformation) is that it has one input port that describes the digital object that is being trans-
formed, one output port that describes the entities on the file system (files or directories) that were
produced by the transformation, and a number of other output ports that produce measures of the
transformation. Those measures can be made via the application of SCAPE Characterisation Compo-
nents (see WP9) to the input entities, or to the output entities, or to any intermediate entities pro-
duced within the PAP. They can also be made via the application of SCAPE QA Components to pairs

7

of entities, when they will be measures relating to the comparisons and not to the individual entities
compared. Each output port that carries a measure is annotated with information describing what
metric was applied to get the measure, and with what it is a measure of (as otherwise there are met-
rics that are equally applicable to both input and output objects).

The other parts of a PAP are the collection of objects to which to apply the PAP workflow, and a rule
(encoded as Schematron1) that describes whether a particular transformation was successful. An
example document that might correspond to measures produced by the workflow in Figure 5 is given
in Figure 6, with dummy values throughout (in particular, when used with a practical PAP the type
field would be the name as in the SCAPE metric ontology, and the values would be the outputs of the
relevant components in the PAP):

Figure 6: Example of measures XML document, with dummy values

1 ISO/IEC FDIS 19757-3: Rule-based validation - Schematron.

<measures>
 <measure subject="input" type="a">123</measure>
 <measure subject="input" type="b">234</measure>
 <measure subject="output" type="a">345</measure>
 <measure subject="output" type="b">456</measure>
 <measure subject="comparison" type="c">789</measure>
</measures>

8

Figure 7: An example of a Structure Workflow

The Structure Workflow — intended to be managed by the administrator of the deployment of Ta-
verna Server within which it is deployed — defines how the digital object references in the submitted
PAP are retrieved from the configured repository, and then feeds the instantiated objects through an
(initially-empty) inner workflow to perform the transformation. After that, it collects the combined
measures before applying an assessment to the combined measures to determine whether the trans-
formation was successful; that measure is provided as an input to the workflow as part of the overall
PAP, and will in practice be a Schematron document. The final steps of the Structure Workflow are to
stage the results of successful transformations to the repository2, to produce a report describing the
successful and failed transformations, and to notify the Plan Management Service (the instantiation
of the Plan Management API, see D4.1) about the outcome of the transformation.

2 Formally, the source and destination repositories do not need to be the same. This allows the content holding
institution to review the processing of the PAP to determine for themselves whether they trust that the trans-
formation did what they wanted it to and to the quality they desired.

9

Figure 8: The Enactment Workflow generated by combining the PAP workflow and the structure workflow

The combined Enactment Workflow is formed within Taverna Server by the application of a mechan-
ical transformation that works by plugging the PAP workflow into the innermost part of the structure
workflow and then creating and connecting up appropriate utility components to cause the metada-
ta encoded as annotations on PAP workflow ports to be manifested as concrete parts of a generated
XML document that describes the entire results. It is this document that will have the Schematron
assessment applied to it. The non-workflow parts of the PAP become instead arguments to the over-
all enactment workflow.

3.2.3 REST API Description
The REST interface supported by Taverna Server to allow access to the ability to enact Preservation
Action Plans is exactly as described here. The {serviceAddress} parameter is a URL that de-
scribes the location of the service. The {id} parameter is an arbitrary string that does not contain a
“/”. All operations require authentication; Taverna Server supports authentication via HTTP Basic

10

Auth, and it is recommended that Taverna Server be deployed to use HTTPS to secure its communi-
cations with clients.

Query Current Preservation Action Plan Enactment Jobs

GET {serviceAddress}
Returns XML document describing the current Preservation Action Plans enactments being
processed via this interface. The document will contain links pointing to the current job re-
sources.

Accept New Preservation Action Plan
POST {serviceAddress}
Accepts a Preservation Action Plan and asynchronously instantiates a workflow run that en-
acts the plan. When the plan is syntactically correct, returns a redirect to the job resource
that is used to track and manage the enactment.

Query Preservation Action Plan Enactment Information

GET {serviceAddress}/{id}
Returns an XML document describing the job that was created to enact a Preservation Action
Plan. This includes a link to the resource that models the address that completion notifica-
tions should be pushed to, a link to the workflow document that was actually enacted (i.e.,
post transformation), a link to a resource that allows the execution status to be queried for
(a standard feature of Taverna Server), and after execution has finished, a link to a WebDAV
directory holding the output files, and a link to the workflow run provenance bundle.

Destroy Preservation Action Plan Enactment
DELETE {serviceAddress}/{id}
Destroys a particular enactment of the Preservation Action Plan and deletes all the resources
associated with it. If the enactment is executing, this terminates the execution immediately.

Query Preservation Action Plan Completion Notification Address

GET {serviceAddress}/{id}/notification
Returns a plain text document containing the address that a notification of completion of a
Preservation Action Plan enactment job will be pushed to.

Set Preservation Action Plan Completion Notification Address
PUT {serviceAddress}/{id}/notification
Sets (as plain text) the address that a notification of completion of a Preservation Action Plan
enactment job will be pushed to. An empty document indicates that no notification should
be sent.

3.2.4 Future Work: Enhancement with PPL
The Enactment Workflow has the property (for reasonable PAP workflows) that all the information
combination operations in it are joins. Indeed, as noted above, the Enactment Workflow has a form
that is already logically very close to that of a MapReduce job, and the operations applied to one
digital object have principally no effect on other digital objects. This means that the enactment work-
flow will be comparatively straightforward for the PPL (being developed in WP6) to compile into an
optimized form for enactment on a highly parallel non-Taverna platform. However, this is distinct
from the transformation described above that converts the PAP workflow into the enactment work-
flow, as that is necessary for the PAP to be correctly enacted at all; the PAP does not describe the
process of accessing the repository or of computing whether the transformation was correct.

11

Once a reasonably robust PPL is available, it will integrate into the execution flow model as in Figure
9. This should be seen as being very similar to the model used in Figure 4; only the implementation of
the Execute stage is substantially different.

Figure 9: Overall Model of Execution of SCAPE Preservation Action Plans with PPL

3.3 Availability
The release of Taverna Server 2.5.3 is available for download.

https://launchpad.net/taverna-server/2.5.x/2.5.3
The installation guide is available as a separate document.

https://github.com/myGrid/taverna-server/blob/2.5.3/install.pdf?raw=true
The user manual is available as a separate document.

https://github.com/myGrid/taverna-server/blob/2.5.3/usage.pdf?raw=true
The source code for Taverna Server is on Github.

https://github.com/myGrid/taverna-server/tree/2.5.3

The build of Taverna Server with support for the SCAPE Execution Service model is currently a devel-
oper prototype only. The source code for this prototype is on Github:

https://github.com/myGrid/taverna-server/tree/scape-execution-interface

4 Glossary
Term Definition
PAP Abbreviation: Preservation Action Plan
Plan Management Service A service that holds a Preservation Plan and manages its lifecycle. This

is a service that implements the Plan Management API, described in
Deliverable D4.1.

PLATO A web-based tool that creates a Preservation Plan and provides a user
interface for viewing, managing and updating that plan. The plan it-
self is stored in the Plan Management Service after creation.

PPL Abbreviation: Program for parallel Preservation Load
Preservation Action Plan A document that is part of a Preservation Plan defined by PLATO and

stored in the Plan Management Service.

Submit

PAP

Enhance
to Full WF

Prepare
Inputs

Execute
Publish
Results

Structure
Workflow PPL Hadoop

https://launchpad.net/taverna-server/2.5.x/2.5.3
https://github.com/myGrid/taverna-server/blob/2.5.3/install.pdf?raw=true
https://github.com/myGrid/taverna-server/blob/2.5.3/usage.pdf?raw=true
https://github.com/myGrid/taverna-server/tree/2.5.3
https://github.com/myGrid/taverna-server/tree/scape-execution-interface

12

Term Definition
Preservation Plan An updateable document that acts as the central data model of a

preservation planning activity. Stored in the Plan Management Ser-
vice.

Program for parallel Preser-
vation Load

A tool for converting a Taverna Workflow (using a restricted set of
suitable operations) into a program that can be enacted efficiently on
a Hadoop cluster. See work-package WP6.

SCAPE Characterisation
Components

Characterisation components are a family of SCAPE Components (de-
fined to wrap tools produced in WP9) that compute one or more
properties of a single instantiated digital object or file. The output
ports that produce measures are always annotated with the metric
(in the SCAPE Ontology) that describes what the component com-
putes.

SCAPE Components SCAPE components are Taverna Components, identified by the SCAPE
Preservation Components sub-project, that conform to the general
SCAPE requirements for having annotation of their behaviour, inputs
and outputs. SCAPE components may be stored in the SCAPE Compo-
nent Catalogue, which is a part of the myExperiment web service.

SCAPE Migration Compo-
nents

Migration components are a family of SCAPE Components (defined to
wrap tools produced in WP10) that apply a transformation to an in-
stantiated digital object or file to produce a new file. The input is an-
notated with a term (from the SCAPE Ontology) that says what sort of
digital object/file is accepted, and the output is annotated with a
term that says what sort of file is produced.

SCAPE Ontology The SCAPE Ontology is an OWL ontology that formally defines the
terms used by computing systems in SCAPE.

SCAPE QA Components QA components are a family of SCAPE Components (defined to wrap
tools produced in WP11) that compute a comparison between two
instantiated digital objects or two files. They produce at least one
output that has a measure of similarity between the inputs, and that
output is annotated with the metric (in the SCAPE Ontology) that
describes the nature of the similarity metric.

SCAPE Utility Components Utility components are a family of Taverna Components that provide
miscellaneous capabilities required for constructing SCAPE workflows,
but which are not a core feature of the SCAPE preservation planning
process. For example, they can provide assembly and manipulation of
XML documents that contain collections of measures of workflows.

13

Term Definition
Taverna Components Taverna components are Taverna workflow fragments that are stored

independently of the workflows that they are used in, and that are
semantically annotated with information about what the behaviour of
the workflow fragment is. They are logically related to a programming
language shared library, though the mechanisms involved differ.

Taverna components are stored in a component repository. This re-
pository can either be a local directory, or a remote service that sup-
ports the Taverna Component API3; the Taverna team supports
myExperiment as such a service. Only components that are stored in
a publically accessible service can be used by a Taverna workflow that
has been sent to a system that was not originally used to create it.

This will be described in depth in Deliverable D7.3.

Taverna Server Taverna Server is a multi-user service that can execute Taverna work-
flows. Clients do not need to understand those workflows in order to
execute them.

Taverna Workbench The Taverna Workbench is a desktop application for creating, editing
and executing Taverna workflows.

Taverna workflow A Taverna workflow is a parallel data-processing program that can be
executed by Taverna Workbench or Taverna Server. It is stored as an
XML file, and has a graphical rendering.

3 http://wiki.myexperiment.org/index.php/Developer:Components

http://wiki.myexperiment.org/index.php/Developer:Components

