

This work was partially supported by the SCAPE Project. The SCAPE project is co-funded by the
European Union under FP7 ICT-2009.4.1 (Grant Agreement number 270137).
This work is licensed under a CC-BY-SA International License

Technical Architecture
Report
Version 1

Authors
Peter May (British Library), Carl Wilson (Open Planets Foundation)

September 2012

http://creativecommons.org/licenses/by-sa/4.0/

iii

Executive Summary
This report provides a detailed outline of the functional components that comprise the architecture
of the SCAPE project, in particular describing the interfaces required between each of these
functional entities. It should be read in conjunction with the Technical Implementation
Guidelines [59], which define project-wide technologies, coding best practices and recommendations
for development environments and tools, and also in conjunction with other SCAPE deliverables as
referenced throughout this document. This report is primarily aimed at those wishing to get an
understanding of the general architecture of the SCAPE environment and how all the various
development activities combine together, but it also serves as a means to capture the direction of
development and ensure all developers understand the interconnections surrounding their work.

iv

Table of Contents

Deliverable .. i

Executive Summary ... iii

1 Introduction .. 1

1.1 Open Source Development ... 2

1.2 Agile Development .. 2

1.3 Abbreviations .. 3

2 Architecture Overview .. 4

3 Automated Watch Component ... 8

3.1 Introduction ... 8

3.2 Functional Overview.. 8

3.3 Technical Overview ... 8

3.4 Sources .. 9

3.5 Source Adapters .. 9

3.6 Source Adaptor Manager .. 10

3.7 Data Merging and Linking ... 11

3.8 Knowledge Base .. 11

3.9 Automated Watch Client ... 12

3.10 Monitor Services ... 12

3.11 Assessment Service ... 12

3.12 Notification Service ... 13

3.13 The Repository Simulator .. 13

3.14 Required Interfaces ... 13

3.15 Packaging and Deploying .. 14

3.16 Roadmap ... 15

4 Automated Planning Component .. 16

4.1 Introduction ... 16

4.2 Functional Overview.. 16

4.3 Technical Overview ... 17

v

4.4 Automated Planning Tool .. 17

4.5 Web-based Analysis Tool .. 18

4.6 Machine Interpretable Policy Model .. 18

4.7 Required Interfaces ... 19

4.8 Packaging and Deploying .. 20

4.9 Roadmap ... 20

5 SCAPE Component Management .. 21

5.1 Introduction ... 21

5.2 Functional Overview.. 21

5.3 Technical Overview ... 21

5.4 SCAPE Components ... 21

5.5 SCAPE Component Catalogue ... 23

5.6 Taverna Workflow Modelling Environment .. 23

5.7 Required Interfaces ... 23

5.8 Packaging and Deploying .. 23

5.9 Roadmap ... 24

6 Digital Object Repository (DOR) .. 25

6.1 Introduction ... 25

6.2 Functional Overview.. 25

6.3 Technical Overview ... 25

6.4 Digital Object Model ... 26

6.5 Reference Repositories ... 26

6.6 Plan Management Logic .. 27

6.7 Data Layer .. 27

6.8 Loader Application .. 28

6.9 SCAPE Plan Management GUI ... 28

6.10 Required Interfaces ... 28

6.11 Roadmap ... 29

7 Execution Platform.. 31

7.1 Introduction ... 31

7.2 Functional Overview.. 31

vi

7.3 Technical Overview ... 31

7.4 Parallel Preservation Components .. 32

7.5 Parallel Execution System ... 32

7.6 Taverna Engine .. 34

7.7 Job Execution Service .. 35

7.8 Microsoft Azure ... 35

7.9 Required Interfaces ... 36

7.10 Packaging and Deploying .. 36

7.11 Platform Instances... 37

7.12 Roadmap ... 37

8 SCAPE Data Publication Platform .. 39

8.1 Functional Overview.. 39

8.2 Technical Overview ... 40

8.3 Roadmap ... 41

9 Conclusion .. 42

10 References .. 43

1

1 Introduction
The SCAPE project is developing scalable tools, services and infrastructure for the efficient planning
and execution of preservation strategies for large-scale, heterogeneous collections of complex digital
objects. Through this, digital preservation state-of-the-art will be enhanced in three ways:

• by developing infrastructure and tools for scalable preservation actions;
• by developing a framework for automated, quality assured preservation workflows;
• by integrating these components with a policy-based preservation planning and watch

system.

To achieve these advances SCAPE are developing a platform tailored towards the automated
planning of preservation plans, monitoring of knowledge impacting these plans, and the scalable
execution of the preservation plan workflows on large content collections. The majority of
development work is broadly divided into a number of key sub-components, Automated Watch,
Automated Planning, Preservation Components, the Execution Platform and the Digital Object
Repository, with validation of these developments occurring through three testbed repositories.
Automated Watch provides the mechanisms to monitor the content itself, designated user
communities and other systems in order to provide actionable triggers for the planning component.
Automated Planning provides the means to develop, monitor, execute and evolve preservation plans,
the workflows of which, constructed from Preservation Component tools and services, will be
executed on the Execution Platform. The Execution Platform provides scalable infrastructure, aiming
to enhance the computational throughput and storage capacity of digital object managements
systems through varying the number of computational nodes and enabling a parallel data processing
approach, imperative to achieving reasonable processing times for large data sets. Execution
management of preservation plan workflows and the storage of data sets will be via the Digital
Object Repository.
This report provides an overview of the technical status and direction of the SCAPE project, giving
details about these main components and how they are expected to interact with one another. In
particular it identifies the main interface points between the various architectural components. It
does not attempt to capture all background knowledge and experimentation used to drive the
technical choices, instead associated background documents and reports will be referenced where
appropriate.
This report starts, in Chapter 2, by providing a component-oriented overview of the SCAPE
architecture, highlighting the main functional components described above, along with the expected
interfaces between them. Each of these main functional components is then described in further
detail in chapters 3 - 1, providing relevant functional and technical information, where known, and
referencing specifications where these have already been defined. In particular, each component's
main interfaces are described, along with details about how it is expected to be packaged and
deployed, as well as a brief overview of future SCAPE milestones and deliverables of relevance.
Finally Chapter 8 describes, in similar detail, a complementary component relating to the publishing
of reproducible experimental results.

2

1.1 Open Source Development
Where possible, and where it makes sense, existing software and tools shall be developed and
enhanced to add the functionality required by SCAPE. Changes should be offered back to the original
development branch of the software, where it makes sense to do so, in order to encourage wider
community support for maintaining the enhancements and to enable them to persist beyond the
scope of the SCAPE project. As a good example, SCAPE have already enhanced Apache Tika™ [40]
and successfully pushed these enhancements back into the main Apache Tika™ release.
Some enhancements may not be pertinent for such wider release however, in particular preservation
specific enhancements which are not aligned with the original open source tool's agenda or
roadmap. In such cases, SCAPE will have to develop and maintain its own fork of the code base,
ensuring that this is kept synchronised with the original code base (i.e. the fork should be kept up to
date with the original code base).

1.2 Agile Development
Many of the SCAPE software development work packages employ iterative development practices
closer to Agile software development methodologies than a more traditional, so called, waterfall
methodology. The project is not prescriptive as to the methods individual work packages or
institutions employ, preferring to allow them to work as they would normally. However, the
deliverables, milestones, and checkpoints from the project's Description of Work favour the release
of early, simple prototypes which are refined through iterative cycles of development and testing, as
well as integration testing with other components where required.
The main reason for this is the research nature of much of the projects software development. It
would be difficult to be confident in a complete, up-front design process, when so many of the
activities are trying to establish what is possible in terms of functionality and scale. The other reason
is simply that many of the partners are more comfortable working in this manner.
This should be borne in mind when reading this report, as there are areas where the exact manner in
which a piece of functionality will be implemented or the precise definition of an API is yet to be
finalised. Many of the sub-projects and work packages have produced, or are in the process of
producing early iterations of components. Testing of these, both individually and as an integrated
whole, will inform and shape the final architecture.
In this spirit, this Architectural Report represents a current snapshot in time of the project
architecture. The scope and number of components and component-level interfaces should be
considered stable, although the maturity level of these interfaces, and in particular component-
internal interfaces, varies. Precise definitions of operations are being refined on an on-going basis,
and as such, this document will be updated as progress is made and individual component designs
are adapted and finalised. There will be a second official release of the Architecture Document in
M30 of the project (Deliverable D2.3).

3

1.3 Abbreviations
The following abbreviations are used throughout this report:

Table 1: Abbreviations

Abbreviation Description
AIP Archival Information Package
API Application Programming Interface
CQL Contextual Query Language
CSV Comma Separated Values
DIP Dissemination Information Package
DOM Digital Object Model
DOR Digital Object Repository
DROID Digital Record Object Identification
GUI Graphical User Interface
HDFS Hadoop Distributed File System
HTTP HyperText Transfer Protocol
JSON JavaScript Object Notation
LSDR Large Scale Digital Repository

METS Metadata Encoding and Transmission Standard
OAIS Open Archival Information System
PPC Parallel Preservation Components
PPL Program for parallel Preservation Load
PREMIS PREservation Metadata: Implementation Strategies
REST REpresentational State Transfer
SCAPE SCAlable Preservation Environments
SDK Software Development Kit
SIP Submission Information Package
SOAP Simple Object Access Protocol
SRU Search/Retrieve via URL
SSH Secure SHell
TCK Technology Compatibility Kit
URI Uniform Resource Identifier
WSDL Web Service Definition Language
XML eXtendable Markup Language

4

2 Architecture Overview
This section provides an overview of the SCAPE platform architecture, describing the top-level and
sub-level components and, importantly, the interfaces required between them. These components
and interfaces are described in further detail in the subsequent chapters.
Figure 1 shows an overview of the top-level components along with the interfaces needed to connect
them. For ease of understanding, these interfaces are colour coded to match the component
responsible for their implementation. For example, the Digital Object Repository is responsible for
the Report, Plan Management and Data Connector APIs.
As can be seen, at a high level the SCAPE project consists of a number of interconnecting
components each handling specific aspects of functionality to ensure the preservation of digital
objects stored within a Digital Object Repository (DOR). The Execution Platform manages and runs
parallelised preservation workflows responsible for expedient and reliable execution of preservation
actions on some data set within the DOR, and ensures the validity of the outcome. For example, a
workflow may migrate all files of one format to another format and ensure that the relevant
significant information is maintained, or it may perform file identification and characterisation on a
large set of files using a tool such as DROID or Apache Tika™.
Workflow execution is initiated by the DOR through the Job Execution Service API. DOR data itself is
accessed or referenced (with data access via an externally defined agent) through the Data
Connector API, with the data either being uploaded directly to the Execution Platform in advance of
workflow processing, or accessed directly from storage by the Execution Platform during processing –
SCAPE supports either approach. The outputs from such workflow executions will filter back to the
DOR (i.e. files of new formats) by way of the Data Connector API and/or be stored and published in
the SCAPE Data Publication Platform repository through the LDS3 API.
Both the DOR and SCAPE Data Publication Platform repositories are used as Sources of information
for the Automated Watch component (known as SCOUT), which builds and monitors a view of the
world based on its input Sources in relation to institutional policies. Automated Watch constantly
updates information from its Sources either by periodically polling for information on the
SourceAccess Pull API, or by receiving pushed information via its Source Push API (the DOR also
provides information via the Report API). Watch can then reassess its world view and notify the
Planning Component if some predefined threshold to some criterion is met, for example, the cost of
some specific migration software may have reduced to an acceptable level, or the number of files of
a particular format may have increased to a level where an appropriate preservation planning action
should be triggered. Such criteria are set by the Planning Component through the Watch Request
API, assessed by the Watch Component, with corresponding actions triggered through the Notify
API. Assessments too complex for the Watch Component’s Boolean logic may be performed (by an
operator) through the External Assessment API. The Planning Component is also responsible for
creating, monitoring and testing preservation plans. It builds upon the PLATO planning tool [27]
which provides a decision support tool for assessing the most appropriate preservation actions to
perform on a content collection, along with audit evidence documenting the decision making
procedure used to create the associated preservation plans. SCAPE aims to build upon this tool
through use of the Automated Watch Component, machine interpretable policy models and content
profiles to help automate the planning process.
Preservation Plans are built from preservation tools and workflows (Components) defined and stored
in the SCAPE Component Catalogue (myExperiment [7]). Workflow Components themselves are

5

created in the Taverna Modelling Environment [23] and registered in the Component Catalogue via
the Component Registration API. Components can then be accessed through the Component Lookup
API and used to generate preservation plans in the Planning Component. Here these plans are
assessed and "successful" plans can be uploaded to the Digital Object Repository, using the Plan
Management API, for execution.
Plans uploaded to the DOR can be managed through the SCAPE Plan Management GUI which also
utilises the Plan Management API. It is via this GUI, that preservation plans can be initiated on the
Execution Platform (through the Job Execution Service API) for some content collection held in the
DOR. A Loader Application provides the ability to initially load data in to the DOR in accordance with
the SCAPE Digital Object Model for data.
Figure 2 captures these components in greater depth, indicating sub-components that perform the
necessary functionality. Components coloured light-red and with underlined names are Sources to
the Automated Watch component and therefore implement the Sources' API (unless otherwise
stated in the discussion that follows). All these components, sub-components and interfaces will be
described in detail in the following chapters.

6

Figure 1: Colour coded top-level architectural diagram highlighting which component is responsible for which APIs

7

Figure 2: SCAPE component architectural diagram

8

3 Automated Watch Component

3.1 Introduction
The aim of Automated Watch is to substantially improve automated support for effective digital
preservation watch. Specifically its aims are:

• To increase the breadth and scope of collected digital preservation information.
• To normalize and structure gathered information into a queryable Knowledge Base.
• To allow both human and automated systems to query and monitor information in the

Knowledge Base.
• To develop software components that monitor information in the Knowledge Base for

significant events.

3.2 Functional Overview
The Automated Watch component is an automated information gathering and monitoring system
that:

• Gathers information relevant to digital preservation activities from potentially any source of
information of interest to the planner, e.g. repositories, technical registries.

• Allows software agents and human operators to add information relevant to digital
preservation activities.

• Allows software agents and human operators to ask questions about gathered information
through Watch Requests.

• Provides an automated monitoring system that looks for changing information and re-
answers questions to a schedule.

• Assesses answers against conditions and triggers submitted in Watch Requests, and alerts
external agents when conditions are met.

• Provides a Repository Simulator that analyses the information gathered from a user’s
repository and projects its future state facilitating timely Preservation Planning for upcoming
requirements.

3.3 Technical Overview
The Automated Watch component comprises a number of sub-components that each provides
specific functionality to achieve the goal of monitoring the "state of the world" through various
Sources of information and providing notifications to the planner. Information is gathered via pull
adaptors, developed to normalize and aggregate data from external sources, alternatively sources
can push information to the Automated Watch system via the push source API.
Adding new sources to the system means developing a compliant adaptor. A Data Merging and
Linking sub-component adds provenance information and links to equivalent entities and properties
held in the knowledge base. The knowledge base also contains pre-defined questions that can be
answered from information held in the knowledge base. A planner can submit a Watch Request
either synchronously or asynchronously, via the Watch Request API in order to query specific
measurements of interest and receive notification when conditions are met. The query, conditions
and means of notification are all parts of a Watch Request. Synchronous Watch Requests are used to
query for a specific measurement at a specific point in time, blocking the requesting client until the

9

response is returned. Asynchronous requests tell the Automated Watch component to monitor for
changes in specific measurements (by specifying Conditions) triggering a Notification such as an
email, to the requesting client when such a change is detected. This approach does not block the
requesting client.
Detailed design information for the Automated Watch system can be found in SCAPE D12.1 -
Identification of triggers and preservation Watch component architecture, subcomponents and data
model [41].
The following sections discuss the various sub-components involved in the Automated Watch
Component and how they interact.

3.4 Sources
Although not strictly a part of the Automated Watch component, Sources are described here to aid
understanding of the Automated Watch sub-components. A Source represents specific aspects of the
world and provides measurements of the properties associated with it, and can be internal or
external to the project. Key sources currently considered are:

• Format Registries
• SCAPE Preservation Components catalogue (MyExperiment)
• Policy models
• Repositories
• Experimental Results
• Content Profiles
• Human Knowledge
• Web Browser snapshots (being developed within Preservation Watch)
• A Repository Simulator that projects a repository’s future state based upon repository trends

(being developed within Preservation Watch)

Sources are coloured pink in Figure 1 implying that, although they may also connect to other SCAPE
components, they will interact with Source Adapters through either the Source Access Pull API or
the Source Push API. An exception would be the Digital Object Repository which implements
a Report API for interaction with a relevant Source Adapter.

3.5 Source Adapters

3.5.1 Functional Overview
A Source Adapter gathers information from a Source and transforms it to the Entity/Property model
adopted for the Knowledge Base. There are two approaches to achieving this, push or pull, the
choice of which to use will depend on multiple factors such as whether the Source is Watch
component agnostic or whether it is possible to create software to run on the Source.
The Source Adapters employed should map to the Sources being used. The SCOUT preservation
watch project contains two reference adaptors described below.

3.5.2 PRONOM Adaptor - A Reference Format Registry Adaptor
There is a PRONOM source adaptor developed as part of the Preservation Watch process. The
adaptor queries the PRONOM Linked Data SPARQL endpoint and transforms the returned JSON into

10

Entities/Properties for passing on to the Merging and Linking component. The Adaptor code is part of
the SCOUT project [SW1].

3.5.3 C3PO Adaptor - A Reference Content Profile Adaptor
C3PO (Clever, Crafty Content Profiling of Objects) [SW2] is a content profiling tool. It doesn't perform
any characterisation; instead it parses output from the FITS tool [43] and aggregates into a MongoDB
[44] document database. There is also a tool that retrieves FITS records from the RODA repository for
consumption by C3PO. C3PO also provides a web based tool to view and the aggregated data and a
REST API for retrieving aggregated profile data.
The C3PO adaptor reads and parses the XML data retrieved from the C3PO REST API and retrieves a
subset of the content profile data. The data is converted into the Automated Watch Entities and
Properties before being passed to the Data Merging and Linking component, which enriches the data
before inserting it into the Automated Watch Knowledge Base.
Both of these adaptors are in an early stage of development, but provide examples of how to
develop a plug in adaptor for the Automated Watch system.

3.5.4 Other Source Adaptors
While there could be adaptors written for many different sources of information, the following will
be developed as part of Automated Watch:

• RODA Adaptor & eSciDoc Adaptor: These are both repository adaptors that will gather
information about a user’s collection, e.g. Content Profiles.

• Component Catalogue Adaptor: The component catalogue adaptor will gather data from the
SCAPE Preservation Component Catalogue via the Component Lookup API. The information
gathered in the Knowledge Base will allow planners to find tools that meet their planning
requirements, or alert them when tools that provide new functionality required for
preservation activities that had not previously been available.

• Policy Model Adaptor: A policy model adaptor is assumed to be the form of the Automated
Watch component required to incorporate the Machine Interpretable Policy Model into the
Automated Watch Knowledge base. This source will provide data that allows the planner, or
the Automated Planning system to monitor an organisation's repository contents checking
for policy violations, and receive notifications if they occur.

3.6 Source Adaptor Manager

3.6.1 Functional Overview
In order to control the scheduling of Source Adaptors used by a particular Automated Watch instance
a Source Adaptor Manager is being developed. This manager will allow an operator to:

• Install new adaptors.
• Upgrade installed adaptors.
• Enable or disable installed adaptors.
• Manage the scheduling of adaptors, i.e. how often the external sources are queried.

11

3.6.2 Technical Overview
This component provides a web API for the life-cycle management of the Source Adaptors and a web
based front end that are part of the SCOUT project.

3.7 Data Merging and Linking

3.7.1 Functional Overview
This sub-component provides a data processing layer, sitting between the Source Adapters and the
Knowledge Base. The source adaptors convert data to fit the internal data model, but different
source adaptors may present contradictory or incompatible data. The merging and linking
component further process incoming data by:

• Adding provenance information to data
• Resolving inconsistencies between data sources.
• Providing additional cross-references between entities and properties.

It is the addition of the cross-references that will enable rich queries of the Knowledge Base.

3.7.2 Technical Overview
The component retrieves properties and entities from Sources using the Source Adaptor’s plugin
interface. It also provides the Push Source API to push information to it, and makes use of the
Knowledge Base's Submit Data API to submit data for permanent storage in the Knowledge Base.

3.8 Knowledge Base

3.8.1 Functional Overview
The Knowledge Base is responsible for storing representation information about the world using a
model based on Entities and Property Values. Ultimately, each Entity describes a specific set of values
that are measurements of each Property at a specific moment in time. For example, for a "format"
Entity, relevant Properties might be "name" (e.g. JPEG2000), "version" (e.g. 1.0), or "tool support"
(e.g. limited); over time, the tool support for JPEG2000 may increase, therefore at a later point a new
Entity may indicate "tool support" as "widespread". Relevant internal APIs are provided to store and
retrieve data from the Knowledge Base, namely Submit Data and Access Data.
A history of all knowledge gathered is kept in order to allow the Knowledge Base to be queried for
past data thereby enabling repeatability of the decision making process. The Knowledge Base also
stores all of the questions posed by software agents or external users.

3.8.2 Technical Overview
It is planned to use RDF Linked Data as the model for storing data in the Knowledge Base, as this
enables a generic and more flexible data representation than a relational data model.
The Knowledge Base uses Apache Jena [45], a Java framework for storing and querying large RDF
datasets. Jena also provides support for OWL ontologies and a rule-based inference engine for
reasoning with RDF and OWL data sources, useful for framing and answering the Watch Request
questions. The SPARQL query language is planned to be used to represent Watch Request questions.

12

3.9 Automated Watch Client

3.9.1 Functional Overview
This is a web interface which provides the following functionality for planners:

• The manual addition of information to the knowledge base.
• Browsing of the knowledge base.
• The Submission of Watch Requests to the Automated Watch system.

3.9.2 Technical Overview
The Automated Watch Client is a Java Web application, packaged as part of the Automated Watch
web application. The GUI provides an interface that allows the user browse the information in the
knowledge base and to add new information through the Automated Watch Push API.
The GUI also provides a means by which human operators can submit Watch Requests. Watch
Requests consist of:

• One or more pre-defined Questions that assess some aspect of the world through the
querying of the Watch database.

• One or more Triggers that define Boolean conditions to be tested against the answers to the
Watch Request's question set.

• One or more notifications that will alert external agents if the trigger conditions are met.

3.10 Monitor Services

3.10.1 Functional Overview
Monitoring services observe one or more information sources and recalculate answers to questions
held in the Knowledge Base, when the results rely upon external information that has changed.
These questions are predefined points of interest related to the information gathered from the
sources. An example based upon a Component Catalogue source adaptor might be the number of
tools fulfilling a particular criterion. As new tools are added to the catalogue the information will be
gathered by the source adaptor, which in turn would be picked up by a Monitor Service. The service
would then recalculate the answer to the question based upon the new information in the
knowledge base.

3.10.2 Technical Overview
The Monitor sub-component provides a mechanism for continuously watching the Knowledge Base
for changes to specific Watch Requests the client is interested in. To do this, it provides a Data or
Question Changed interface for being notified about changes to the underlying data or the Watch
Requests themselves. Upon receiving such an update, this sub-component will identify which Watch
Requests require re-evaluation and instigate this re-evaluation through the Assessment Service.

3.11 Assessment Service

3.11.1 Functional Overview
The assessment service is responsible for evaluating Watch Requests utilising the latest information
from the Knowledge Base, and the conditions associated with the Watch Request via the triggers.

13

There are two types of assessment, a preliminary assessment which is a simple test of a Boolean
condition contained in a trigger. This may be all that is required for basic Watch Requests, if the
trigger conditions are met by simple assessment test then the trigger will fire and notify external
agents that an external assessment is required.

3.11.2 Technical Overview
The Assessment Service is a part of the Automated Watch Java Web Application (the SCOUT project).
Access to the Knowledge Base is provided by the internal Access Data interface, and the information
received is compared against a Watch Request Trigger to determine if a significant event has
occurred. In many cases conditions to be assessed will be more complex than this requiring an
external assessment service such as that offered by the Automated Planning Component through its
External Assessment API. This would allow an existing preservation plan to be re-evaluated in the
light of the new information, and assess whether the new state required action.

3.12 Notification Service

3.12.1 Functional Overview
The notification service is responsible for informing external entities of significant events as defined
by the monitoring and assessment services. When the Monitor sub-component detects a significant
event, based upon the questions and conditions stored in the Knowledge base, the Notification
Service is used to alert interested parties. An interested party might be a human planner informed by
email, or a software agent, typically the Automated Planning component.

3.12.2 Technical Overview
The Notification Service is again being developed in Java, as part of the automated watch SCOUT
project. The notification component is extensible to allow different types of notifications to be
offered, for example email, or HTTP API.

3.13 The Repository Simulator

3.13.1 Functional Overview
The Preservation Watch work package is also developing a repository simulator. This component will
analyse repository metadata held in the Automated Watch knowledge base, and project the future
state of the repository. Trends that may be detected might be accelerating storage requirements, or
an increasing number of items in a particular format. Information about computational resources
required to execute a preservation action across a set of content might also be analysed to establish
how long it might take to run the action, or indeed establish if such a course of action is feasible.

3.13.2 Technical Overview
The Repository Simulator is a Java component, developed as part of the SCOUT Web application.

3.14 Required Interfaces
The Automated Watch component implements two external facing APIs: the Push Source Adaptor
API and the Watch Request API.

14

3.14.1 Push Source Adaptor API
The Automated Watch Push API provides a means for third party software agents to add information
to the Automated Watch Knowledge base without the development of a Source Adaptor. Note that
push sources will not be controlled by the Source Adaptor manager, so that scheduling, and indeed
enabling / disabling an unwanted push sources will have to be done by other means. The API may
also be used internally by the Automated Watch Client to add new information via the web front
end.
In the push model, the Source will send information to the Automated Watch component as and
when it becomes available. Software must be developed for the Source component to achieve this,
which in some circumstances is not possible. The pull model ideally relies on the Source component
providing a network accessible API to enable a relevant Source Adapter to request information
directly, most likely on a periodic basis, however if no such API exists, then the adapter will have to
extract information from the format made available by the Source (for example, HTML parsing of a
web page). The frequency with which data is requested by a Source Adapter is controlled by the
Monitor sub-component through the internal Adapter Configure interface.

3.14.2 Watch Request API
This API will be used by external software agents to submit Watch Requests to the Automated Watch
system. Typically the software agents will be:

1. The Automated Watch Client GUI.
2. The Automated Planning System.

A Watch Request is made up of a number of pre-defined questions, drawn from the Automated
Watch knowledge base, and a number of triggers. Triggers are assessed against questions and, if the
trigger conditions set in the Watch Request are satisfied, the planner or software agent is notified,
for example by email. These questions and conditions are defined as SPARQL queries.

Both APIs are being implemented as RESTful services deployed with the Automated Watch Java Web
Application.

3.15 Packaging and Deploying
The Automated Watch System is Java Web Application built from the GitHub Open Planets SCOUT
Maven Project [SW3] and deployed as a Web Application Resource. The project relies upon the
JBOSS Java EE 6 library and requires a dedicated JBOSS 7 server, rather than a Tomcat Servlet.
RESTful services are provided through Jersey [46] an implementation of REST services for Java, and
part of the GlassFish project [47].

15

3.16 Roadmap

Table 2: Upcoming Automated Watch Component Milestones/Deliverables

Milestone/Deliverable Description Due
MS55 First prototype of the simulation environment M20
MS56 First version of the preservation watch core services M22
MS57 First prototype of the watch component delivered including

adaptors for repositories, and Web content
M28

D12.2 Final version of the Preservation Watch Component due M38
D12.3 Final version of the Simulation Environment M42

16

4 Automated Planning Component

4.1 Introduction
With current state-of-the-art procedures in digital preservation we can define organisational
constraints and we can create plans that treat a homogenous sub-set of a large repository. PLANETS
defined a Preservation Plan as follows:

“A preservation plan defines a series of preservation actions to be taken by a responsible
institution due to an identified risk for a given set of digital objects or records (called collection).
The Preservation Plan takes into account the preservation policies, legal obligations,
organisational and technical constraints, user requirements and preservation goals and describes
the preservation context, the evaluated preservation strategies and the resulting decision for one
strategy, including the reasoning for the decision. It also specifies a series of steps or actions
(called preservation action plan) along with responsibilities and rules and conditions for execution
on the collection. Provided that the actions and their deployment as well as the technical
environment allow it, this action plan is an executable workflow definition.”[48]

PLANETS also produced a preservation planning methodology, a structured workflow for creating,
testing and evaluating preservation plans. The PLATO planning tool [27] developed within PLANETS
follows this workflow to build preservation plans. PLATO produces an executable preservation plan
along with audit evidence documenting the decision making procedures used in creating the
plan[49]. However the plans were:

• Largely constructed manually, which could be a time intensive procedure.
• Were not normally applicable to all of an organisations holdings, but were restricted to a,

normally homogenous, sub-set of a collection.
• Were not deployed and executed automatically in a repository.
• Had to be monitored manually for changes in best practice, collection profile, etc.

Further no mechanism exists to relate preservation policies to preservation plans, correlation has to
be done manually.

4.2 Functional Overview
The goals of SCAPE are to provide an automated planning component that is informed by:

1. The accumulated knowledge of previous preservation plans.
2. An organisation's digital preservation policy.
3. An organisation's digital collections.
4. Other queries performed on the Automated Watch Knowledge Base, e.g. queries of File

Format Registry information.

The Automated Planning component comprises of :

• A new version of the PLATO Planning Tool [27]Building upon the existing PLATO tool but
using the Automated Watch Component, the Policy Model and content profiles to automate
the creation of preservation plans, and the management of the plans..

17

• A machine interpretable model of preservation policy elements.
Modelling preservation policies from the top down as a catalogue of high level policy
elements, and from the bottom up as a machine interpretable model of actionable low level
policy elements in order to inform and automate the planning process, and provide
information to the Automated Watch Knowledge Base.

• An analysis tool for mining the results of previous preservation plans querying past
preservation plans and provide decision support to the planning process.

4.3 Technical Overview

The Automated Planning Tool is a Java Enterprise Application that is deployed on a JBOSS server [51].
It provides a web GUI that takes the used through a streamlined planning methodology and produces
Preservation Plans. The Analysis Tool is part of the same Java EE application providing a web GUI
that allows stored Preservation Plans to be analysed for trends.

The machine interpretable policy model is an RDF/OWL model of low level, actionable policies rather
than a software component. Policy models will be placed in the Automated Watch Knowledge base
via a Source Adaptor, or possibly the use of a dedicated loader.

4.4 Automated Planning Tool

4.4.1 Functional Overview
The SCAPE Planning Component continues the development of the PLATO Planning tool used in the
PLANETS project [27]. As described the PLANETS PLATO tool produces executable preservation plans
to an established preservation planning methodology. The process of producing these plans had
various shortcomings described in the introduction.
The planning tool addresses these by adding automated support throughout the established process.
The manual GUI will still be supported for low level plan editing where necessary, or indeed if the
user prefers it. However modules are being developed that will populate forms with recommended
content during each planning step. This will mean a lighter planning process with less labour
intensive form filling, and a lighter GUI.
A fast-track planning mode will also be introduced; this reduces user choice and reduces the 14
planning steps to 4 phases, with a single GUI page for each phase.

4.4.2 Technical Overview
The key to a quicker simpler planning process is the ability to import relevant information from other
sources to support or automated the decision making process at the appropriate stage. For example:

• a Policy Model and a Watch Trigger provide the planner with all of the information required
to describe the plans institutional context, the first planning step.

• an XML content profile can be uploaded that completes the PLATO "define samples" page.

The business logic in PLATO has been refactored so that flexible configurations of the workflow are
quicker to implement, giving the option to create the light weight planning options described in the
Functional Overview.

18

The PLATO tool developed in Planets contained an embedded tool execution engine, known as
minimee. This allowed users to test and compare different tools, or different configurations of a tool
against their planning requirements. While this will be part of the initial iterations of the planning
tool, the aim is to integrate with the SCAPE Component Catalogue to encourage the use of
established or experimental Taverna workflows developed by the Testbeds. Currently minimee offers
real measurement of resource usage by tools, information not yet available from the Component
Catalogue, or Data Publication Platform. As richer information becomes available from SCAPE
components it is envisaged that the minimee platform will be switched off.

The automated planning work package is responsible for the development of the software
component that imports instances of the machine interpretable policy model into the planning tool.

4.5 Web-based Analysis Tool

4.5.1 Functional Overview
This web-based tool supports the systematic and repeatable assessment of decision criteria and is
fully compatible with the PLATO planning tool [27]. It enables decision makers to share their
experiences and in turn build upon knowledge shared by others. The Planning Tool holds a database
containing preservation plans created by different institutions, these are processed and anonymised,
before being presented to the planner along with a number of features facilitating systematic
analysis.

4.5.2 Technical Overview
The analysis tool is a separate GUI from the planning tool, and while the indicators offered by the
tool will be used for some of the planning automation modules, the GUI itself will not be part of the
planning workflow.

4.6 Machine Interpretable Policy Model

4.6.1 Functional Overview
Preservation policies are governance statements that constrain or drive operations for Preservation
Planning but may also have other effects outside of operational planning. For Planning and Watch
policy elements have been divided into 3 classes:

1. Guidance Policies
o strategic, high level policies
o are expressed in natural language
o can't be expressed in machine interpretable form and require human interpretation

2. Procedural Policies:
o model the relation between guidance policies and control policies
o can be represented in a formal model as the relation between guidance and control

policies
3. Control Policies:

o are specific and can be represented in a semantic model

19

Only the control policies are guaranteed to be represented in the machine interpretable policy
model. The development of the machine interpretable policy model is led by the development of a
catalogue of policy elements.

4.6.2 Technical Overview
The policy element catalogue provides a semantic representation of generic policy elements that is
understandable by preservation systems. The initial version of the policy catalogue lists a set of
Guidance Policies which, by definition, will not appear in the machine interpretable model in their
full form. Instead these must be broken down into sets of Procedural Policies, which in turn will be
represented by sets of Control Policies that will be used to create the machine interpretable policy
model. The iterative process of refining the catalogue will be undertaken by using the catalogue to
express the real preservation policies of three partners representing the needs of Large Scale Digital
Repositories, Web Archives, and Scientific Data Sets. Once validated the catalogue will be used to
develop the machine interpretable model.
The machine interpretable policy model provides a source for the Automated Watch system and will
inform the Automated Planning system. Standard tools such as RDF/OWL [50] will be used to define
the terms used to describe and represent Control Policies and support policy reasoning. Similarly to
the catalogue, the policy model will undergo an iterative process of testing and refinement while
been used to model the various Testbed scenarios.
One purpose of the policy catalogue is to guide organisations in creating their own complete policy
model. The iterative processes described above will be used to improve the process of creating
institutional policies by either extending an existing tool, or developing a simple editor or a domain-
specific language that is easier to write, if this is feasible. The process is complex, the aim is to
simplify it as much as possible.

4.7 Required Interfaces
The Automated Watch component must implement two APIs, the Notify API and the External
Assessment API.
There are no recognised interfaces developed as part of the policy modelling workpackage. The
Automated Watch and Automated Planning components are both responsible for developing
software components that will interpret the model and base decisions upon the policy elements. The
Policy Modelling work package is responsible for ensuring technical interoperability between these
components and the policy model.

4.7.1 Notify API
The Notify API will be used by the Automated Watch component to inform the Planning Component
when significant events occur, that have been defined through Watch Requests. Examples would be
a notification that a plan requires updating, due to a change in the state of a repository, or that a
new tool is available that provides previously unavailable functionality required by a preservation
plan.

4.7.2 External Assessment API
The External Assessment API will be used by the Automated Watch component to make external
assessments that are more complex than the state of the Boolean conditions checked by Automated
Watch's own assessment services. The API will provide access to existing preservation plans, in order
to match the simple Questions and their conditions to criteria and evaluate whether the changes

20

result in a revaluation of alternatives. The basis for the assessment will rely on a utility function as
provided by the planning component.

4.8 Packaging and Deploying
The Automated Planning Tool is a JBOSS [51] application packaged as a Java Enterprise Application
Resource.
There is a central instance of the Planning Tool hosted by TUWIEN [27], which is currently running
version 3.0.1. The latest release will continue to be hosted here.
Organisations wishing to host their own PLATO [27] instance would first require a JBOSS server that
has been installed and set up separately on which to host the application.
The Web Analysis module is a separate Web Application Resource file within the Planning Suite ear
that can be deployed with Plato allowing the user to analyse their own plans.. It will also be available
through the PLATO central instance that hosts a large collection of previous Preservation Plans to
analyse.
There is a GitHub project [SW4] where the semantic model of low-level Control Policies is being
developed. The project contains:

• The current version of the policy model ontology.
• Some example properties, criteria, objectives, and scenarios.
• Some experimental queries developed in Java.

4.9 Roadmap

Table 3: Upcoming Automated Planning Component Milestones/Deliverables

Milestone/Deliverable Description Due
MS61 Initial version of automated policy-aware planning component M18
D13.1 Final version of policy specification model M30
MS62 Automated policy-aware planning component v2 with full lifecycle

support
M32

D13.2 Catalogue of preservation policy elements M36
MS63 Report on compliance validation M40
D14.2 Final version of automated policy-aware planning component M42

21

5 SCAPE Component Management

5.1 Introduction
Preservation Plans developed and tested within the Planning Component utilise SCAPE Components
to provide preservation tools and actions. A SCAPE Component is a Workflow designed for execution
on the SCAPE platform that, most likely, wraps a tool execution. For example, a SCAPE Component
may exist to run DROID or Apache Tika™ file identification over a digital object. These Components
are created using the Taverna Workbench and stored in the SCAPE Component Catalogue.

5.2 Functional Overview
SCAPE Components provide a consistent way to represent preservation actions so that they can
easily be discovered and included into larger Preservation Plan workflows. The Taverna Workflow
Modelling Environment provides a means to create these components, enables the addition of
relevant profile information, and ensures that these Components have consistent inputs and outputs
as defined by their respective Component Profile (to facilitate connectivity into larger workflows).
These Components are stored in the SCAPE Component Catalogue for:

i) Monitoring by the Automated Watch component (it is therefore an Automated Watch
Source);

ii) Discovery and use by the Planning Component;
iii) Compilation into Parallel Preservation Components for execution by the Execution Platform.

5.3 Technical Overview
The SCAPE Component Management module shown in Figure 1 and Figure 2 should be considered as
an abstract entity surrounding the two main components: the SCAPE Component Catalogue, and the
Taverna Workflow Modelling Environment.
SCAPE Components will be Taverna Workflows that adhere to a specific SCAPE Component Profile.
Taverna Workbench will be utilised to create these workflows and will be updated to include a
Component Profile validator. The SCAPE Component Catalogue storing the SCAPE Components will
use the myExperiment web portal [7], and will present a RESTful APIs for registration and discovery
of Components.

5.4 SCAPE Components
SCAPE is tasked with producing tools and preservation actions that address scalability issues and can
be used on the SCAPE infrastructure. Part of this work is to develop and enhance the tools for
scalable preservation actions, so for example, whilst many tools already exist that can be applied to
aspects of digital preservation, such as JHOVE, DROID, FIDO, these existing tools have not been
designed with the SCAPE Execution Platform in mind; they need adapting and enhancing so that they
work effectively with the SCAPE platform. In addition to this is the potential need for new or
enhanced tools as required by new workflows, for example to enhance Quality Assurance for some
specific preservation action on some specific dataset (e.g. audio files from radio broadcasts).
Developed and enhanced tools are deployed within SCAPE as SCAPE Components. These are Taverna
workflows that adhere to a specific SCAPE Component Profile.

22

5.4.1 Workflow
A workflow is a sequence of steps or operations on some input that execute according to the defined
flow and combine to perform some complex operation, for example a workflow may take a file
location URL as input and pass this to DROID to identify the specified file, the output of which is
returned to the user. Building upon this, this workflow may be used as part of another workflow
where the identification output is used to control flow within the larger workflow, for example, if a
file is identified as an image file, it may undergo optical character recognition before and after file
format migration with a comparison to provide some metric on the quality of the migration.
SCAPE use Taverna Workflows[23], making use of the Taverna Workflow Modelling Environment (See
Chapter 1.1) for users to produce workflows using a GUI. In general, these workflows can invoke
SOAP/WSDL or REST web services, local Java code, external tools via SSH, or other sub-workflows.
SCAPE has developed a "toolwrapper" to wrap local tools as web services for use within workflows
[SW7].
Taverna Workflows are hosted in the SCAPE Component Catalogue (myExperiment [8]), where they
will be a Source for the Automated Watch component and can be searched for and utilised by the
Planning tool. SCAPE Component workflows required by a Preservation Plan workflow for execution
can also be discovered by the SCAPE Execution Platform and transformed into Parallel Preservation
Components (see Chapter 7.4)..

5.4.2 Component Profiles
To enable interoperability between tools, automation of preservation processes, and discoverability
by Planning and Watch, SCAPE Components need to provide a standardised interface. Such an
interface is provided by the Taverna Workflows adhering to defined input/output interfaces and
by annotating them with a common, standardised vocabulary. Defined combinations of interfaces
and annotations form SCAPE Preservation Component Profiles; SCAPE have already defined a
number of these profiles, extending common ports and annotations, for: migration action
components; characterisation components; quality assurance object comparison components;
quality assurance property comparison components; validation components; and executable plans.
These Profiles are defined [15].
A Profile has four different areas to check:

1. Input ports: Expected input ports of the workflow;
2. Output ports: Expected output ports of the workflow;
3. Taverna Activities: Taverna activities that must be present for the workflow, e.g. external

tool services that are used;
4. Annotations: Workflow level annotations.

As an example, consider a Migration Action Component, with respect to annotations it builds upon
the common elements such as the Component's name, version and ID (a full list can be seen
[15]) with details about the Migration Paths that this component supports, i.e. the file types this
component can migrate from and to. The profile also specifies the particular input ports that must be
defined, where path_from and path_to specify the path of the file to migrate and the path to migrate
it to, as well as a parameter input port to detail any specific options to apply (e.g. tool specific
command line options/flags). Output ports are also specified, specifically the path_from and path_to,
which have the same meaning as before. Finally the Taverna Activity defines the external tool service
used to perform the migration.

23

The Taverna Workflow Modelling Environment will provide a Component Profile Validator to validate
these components against the defined profiles.

5.5 SCAPE Component Catalogue

5.5.1 Functional Overview
The SCAPE Component Catalogue stores SCAPE Components to enable their discoverability by the
Planning Component and the Execution Platform, and for monitoring by the Watch Component.

5.5.2 Technical Overview
The myExperiment platform [7] will be used to store SCAPE Components. Appropriate modifications
will be made to its REST API [16] to enable registration of components and discoverability.

5.6 Taverna Workflow Modelling Environment

5.6.1 Functional Overview
The Taverna Workflow Modelling Environment comprises a graphical workbench for creating and
modifying workflows, adding metadata and component profile information, and registering
Components in the SCAPE Component Catalogue.

5.6.2 Technical Overview
The Taverna Workbench [23] will be used and is a Java based open source tool for designing and
executing scientific workflows. It will require modification to enable validation of components
against the SCAPE Component Profiles and to easily enable registration of Components to the SCAPE
Component Catalogue.

5.7 Required Interfaces
The SCAPE Component Catalogue must implement two APIs: the Component Lookup API and the
Component Registration API. Both these APIs will be integrated into myExperiment's (the SCAPE
Component Catalogue's) REST API [16].

5.7.1 Component Lookup API
The Component Lookup API provides a mechanism for the Planning and Execution Platform
components to discover and access SCAPE components. This has yet to be defined.

5.7.2 Component Registration API
This API provides a means to register SCAPE Components (Taverna Workflows) in the SCAPE
Component Catalogue. This will be achieved using the existing myExperiment plugin for Taverna
which utilises the functionality defined in [17].

5.8 Packaging and Deploying
SCAPE will use a dedicated version of the myExperiment platform [7] to host and share SCAPE
Components. This web-based site enables a common, accessible location for uploading, discovering
and retrieving SCAPE components without the need for institutions to separately install their own
catalogue.

24

The Components themselves are workflows which wrap locally and/or remotely installed software
applications (tools), therefore a major challenge is how to make these workflows, and more
specifically the tools they rely upon, available on the scalable Execution Platform. More specifically,
any such solution should ensure reliable and convenient installation across multiple computing nodes
that form the Execution Platform, including automatic resolution and installation of all necessary tool
dependencies.

5.8.1 Packaging and Deploying Component Tools
As defined by the Component Profiles, SCAPE Component workflows must provide annotations that
indicate which tools they depend upon. This information can be used to indicate which tools must be
deployed to the Execution Platform.
To enable easy distribution, installation and updates to the tools that SCAPE Components depend
upon, the Debian (Linux) software packaging and package management system will be employed.
This provides a standardised and integrated way to manage and install software ensuring that all
dependencies of that tool are also installed. Through this process an end-user can easily install
software through a single command (or click in a GUI), passing responsibility to the package manager
to download the package, resolve dependencies, and install the software. Such a system can also be
configured to enable automatic updates and removal of software packages. The process for building
a Debian package and deploying it to a package repository is fully described in D5.1 [26].

5.9 Roadmap
This section briefly outlines upcoming and future work that needs addressing and relates to the
Taverna Workflow Modelling Environment, SCAPE Components, and the SCAPE Component
Catalogue. Table 2 provides a summary of these upcoming milestones and deliverables.
The Taverna Workbench is available for use already, however enhancements are needed for SCAPE
use, in particular, capturing provenance information about workflow runs, which should be recorded
and persisted in order to perform provenance analyses on the data in the main repository, for
example enabling a trace of the set of transformations applied to an image. The requirements of this
work are captured in [22] and will be implemented in Taverna. Component Profiles also need
capturing and validating to ensure that SCAPE Components present standardised interfaces to
facilitate combination into larger workflows.
SCAPE Components will be stored and shared via the SCAPE Component Catalogue, based on the
myExperiment site, with design and implementation documentation due in M24 and in deliverable
D7.3 (M40). Of particular importance is the Component Lookup API, which needs defining in
coordination with the Execution Platform and Planning components.

Table 4: Upcoming SCAPE Component Catalogue Milestones/Deliverables

Milestone/Deliverable Description Due
MS40 Design and Implementation of the Component Catalogue M24
MS41 Final Preservation Workflow Sharing Platform M42
D7.1 Design of Provenance Component M20
D7.2 Workflow Modelling Environment M36
D7.3 Design and implementation of the preservation component

catalogue
M40

25

6 Digital Object Repository (DOR)

6.1 Introduction
A Digital Object Repository (DOR) is an OAIS compliant repository [28]1, providing a data
management solution for storing the content and metadata of digital objects as well as preservation
plans.

6.2 Functional Overview
The DOR is responsible for helping its user community deposit, curate, preserve and access digital
objects.
Digital objects themselves are comprised of content - the actual data to be preserved such as images
or audio/video files - and metadata representing the technical, administrative, structural and
preservation information. Therefore the DOR is responsible for storing the content and the metadata
of a digital object, as well as maintaining the semantic relationship between digital objects.
The DOR also enables management and invocation of Preservation Plans on the SCAPE Execution
Platform.

6.3 Technical Overview
The actual storage mechanism is repository implementation dependent. The key aspect to enabling a
repository’s use within SCAPE is conformant implementation of the SCAPE Digital Object Repositories
defined APIs. Implementation of these will enable any repository to be used within SCAPE, enabling
other components to access/reference the data, invoke and monitor Preservation Plan executions
and gather reporting information.

The DOR exposes its services through three well-defined HTTP APIs detailed in section 6.10: the Data
Connector API, the Report API and the Plan Management API. The Data Connector API enables access
to the digital objects and preservation plans. The Report API enables the Watch Component to
monitor a repository, and the Plan Management API enables management and invocation of
Preservation Plans.
There are some performance considerations regarding accessing digital objects through a HTTP
interface that should be considered however. In particular, the request duration overhead when
requesting binary content via HTTP varies depending on the size of the requested content. With
small sized content the overhead is negligible, however with large binary content the overhead
becomes significant. To accommodate this, SCAPE defines two strategies, letting stakeholders make
the most appropriate choice to suit their needs: a Managed Content approach whereby files are
accessible only through the Data Connector API; or a Referenced Content approach whereby files are
stored in a file system directly accessible by the SCAPE platform and the Data Connector API merely
passes references to this content. The former approach is not suited to large amounts of data or
where storage and computation are geographically separated because of the IO overhead for data

1 The 2003 OAIS reference model has been superseded by the 2012 version [29], compliance to which has yet
to be determined.

26

retrieval; the latter, on the other hand is suitable for large files as they can be handled (by reference)
without having to moving them between machines, however it does mean that the storage file
system must be directly accessible to the platform.
In order to provide efficient computation, the DOR may store (or replicate) its content directly to the
Execution Platform's storage system. It may also store outcomes of workflows (or parts thereof) that
have been executed against the DOR's contents, so it is vital that the DOR employ a suitable data
model and scalable object store. Transfer of data to the Execution Platform's storage system (i.e.
HDFS) is the administrator's responsibility.
Batch loading of data into a DOR will be supported by a loader application (see section 6.8), which
handles validation, error logging and retrying, and makes use of a HTTP endpoint for ingesting
objects into the repository.

6.4 Digital Object Model
Existing repositories already provide their own Digital Object Model for effective storage of digital
content and metadata. Such diversity is a hindrance to the SCAPE platform in terms of being able to
successfully integrate with every repository. Instead, a common DOM is required.
The SCAPE Digital Object Model is described in detail in [30], essentially however, it is based on a
combination of a METS XML container [31] and PREMIS preservation metadata [32]. Each Intellectual
Entity is represented by one METS file, and each Representation and File will be described by
administrative metadata.
The OAIS model [28] describes, at an abstract level, the requirements that a long-term preservation
archival system must fulfil. Within this model is the notion of three Information Packages:
Submission Information Package (SIP); Archival Information Package (AIP); and Dissemination
Information Package (DIP). Within SCAPE, these packages are METS files adhering to the profile
defined in [30], which defines the mandatory, optional and forbidden elements along with the
metadata schemas that should be used for metadata (e.g. descriptive metadata must only use Dublin
Core terms, and rights metadata must only use PREMIS rights schema). Each METS document must
be assigned a globally resolvable, persistent and unique identifier (recorded in the OBJID attribute),
although no specific schema is prescribed.
As an ingestion package, the SIP is slightly more flexible, in terms of the minimum elements that
should be present in the METS file, than the AIP or DIP. For example, no <amdSec> element is
required in a SIP. Furthermore, no METS identifier is needed assuming that one will be assigned to
the AIP by the repository. Both the AIP and DIP however, have the same profile containing technical
and digital preservation metadata and potentially information about the preservation plan
associated with the Intellectual Entity.

6.4.1 Preservation Plans
Preservation plans can be serialised to XML based on the PLATO XML Schema definition [19] - this
schema needs updating to reflect updates needed within SCAPE. The plan itself is stored as an AIP in
the repository. Executed plans have their provenance information and plan execution details stored
in the digital provenance section of the AIP.

6.5 Reference Repositories
Four repositories are targeted as reference implementations for the SCAPE repository:

• Fedora/eSciDoc

27

• Fedora/DOMS
• Fedora/RODA
• Rosetta

The Fedora-based eSciDoc repository will be used as a reference implementation, with DOMS and
RODA implementing the necessary functionality based on this reference implementation.

6.6 Plan Management Logic

6.6.1 Functional Overview
The Digital Object Repository provides the ability to manage and invoke Preservation Plans using its
data on the SCAPE Execution Platform. The Plan Management Logic sub-component provides any
necessary logic to enable this functionality, including presenting an externally accessible Plan
Management API, interacting with the Execution Platform’s Job Execution Service API, and accessing
and/or updating a Preservation Plan Store.
Some form of user interaction is required to manage and invoke Preservation Plans; this may be
implemented by a repository as part of this sub-component, or alternatively an external GUI (such as
the SCAPE Plan Management GUI – see section 6.9) may be used.

6.6.2 Technical Overview
The Plan Management Logic sub-component will present an externally accessible Plan Management
API as described in section 6.10.3.

6.7 Data Layer
The data layer conceptualises the need for the DOR to store three types of information: Digital
Objects, metadata and Preservation Plans. Therefore, although Figure 2 represents these as three
separate stores, this does not need to be the case. The actual storage configuration is repository
implementation dependent; what is important, from a SCAPE architecture perspective, is the
functionality of the repository and the interfaces to access and reference the digital objects.
A DOR may provide functionality to load data into the repository (outside the scope of SCAPE),
alternatively however, an administrator may use the SCAPE Loader Application (which makes use of
the Data Connector API) to ingest digital objects (see section 6.8).

6.7.1 Digital Object Store
This conceptual entity is responsible for storing and making accessible digital object content .

6.7.2 Metadata Store
This conceptual entity is responsible for storing and making accessible metadata information relating
to the digital objects stored in the Digital Object Store.

6.7.3 Preservation Plan Store
This conceptual entity is responsible for storing Preservation Plans executable on the SCAPE
Execution Platform.

28

6.8 Loader Application

6.8.1 Functional Overview
The Loader Application is an external (to the DOR) component that provides a means for an
administrator to load digital objects into a DOR. It uses the Data Connector API provided by the DOR
to enable the loader application to work with any DOR.

6.8.2 Technical Overview
The Loader Application makes use of the Data Connector API HTTP endpoints to ingest data into the
repository. Authentication is achieved through HTTP Basic Authentication, with encrypted
communication using HTTP over SSL/TLS being highly recommended. Full details about the RESTful
API are described in the Connector API specification [4].
A reference implementation of the Loader Application will be developed within SCAPE, resulting in an
SDK that can be wrapped by a GUI or accessed through a command line interface. This
implementation will address two main use cases: the ingest of managed content (where the SIP
includes the metadata and binary object files); and the ingest of referenced content (where the SIP
includes only the metadata and has URI references to previously uploaded binary object files).
SIPs are expected to be created prior to uploading in accordance with the SCAPE Digital Object
Model. They can be created manually, or by a SCAPE SIP creation tool (still to be developed). The
application is designed to support deposit of digital objects regardless of their size, allowing both for
a SIP to be POSTed to the repository, or for a reference to its location to be POSTed and for the
repository to retrieve it directly.The Loader Application specification is specified [13].

6.9 SCAPE Plan Management GUI

6.9.1 Functional Overview
As a means to view and control execution of preservation plans on the SCAPE Execution platform,
some form of user interface is required. This does not have to be a graphical interface, however
SCAPE have produced an example GUI [12].

6.9.2 Technical Overview
The SCAPE Plan Management GUI will utilise the Plan Management API provided by the DOR to
manage the plans available, and to initiate their execution. By utilising only this API, it will be possible
for this GUI to be used by any SCAPE compliant DOR.

6.10 Required Interfaces
Repository systems must implement three APIs, the Data Connector API, the Report API and the Plan
Management API, to be used within the SCAPE platform. Any repository implementing these APIs
should be able to be used in a SCAPE platform.

6.10.1 Data Connector API
The Data Connector API integrates different repositories with the various SCAPE components,
allowing these components to access the repository content and preservation plans. It does this by
exposing a RESTful interface via HTTP services. Discovery of objects is via an SRU (Search/Retrieve via
URL) search endpoint [2]. This Data Connector API has been defined [4].

29

6.10.2 Report API
The Report API enables communication between a DOR and the Automated Watch component.
The Automated Watch component must monitor repositories, amongst other sources, for
information about their contents and the actions that take place on them. In general terms, the
Automated Watch component defines Source Adapters to collect information from each source,
however as each repository has its own internal information structure and naming schemes, the
Automated Watch component would have to create a new Source Adapter for each repository. To
prevent this, integration between Automated Watch and repositories is split into two parts: a Report
API that is implemented by every repository and provides a unified interface enabling Automated
Watch to retrieve information about events taking place in the repository; and a repository Source
Adapter, implemented by the Automated Watch component, that connects to the Report API.
From the repositories point of view, the Report API is sufficient to enable the repository to be used
as an Automated Watch input, i.e. the repository does not need to implement the ISourceAccess API.
The events exposed and the methods that must be implemented by this Report API are defined in [5]
and based upon the OAI-PMH protocol [6].

6.10.3 Plan Management API
The Plan Management API provides HTTP endpoints for retrieval and management of Preservation
Plans from the SCAPE digital object repository. Plans are represented using XML and can be searched
for, based on their significant properties, using SRU (Search/Retrieve via URL) [2] searching through
the relevant endpoint. Queries are represented using Contextual Query Language (CQL) [3].
Endpoints are defined in [1], along with relevant HTTP status codes.

6.11 Roadmap
Of particular importance as a SCAPE output is the DOR reference implementation, which will provide
insight and guidance on how to implement the three main APIs required by a DOR, as well as
demonstrate the data structure ('content model') support needed by DORs in order to trace
provenance information and digital object versions. The reference implementation will be based on
eSciDoc, with DOMS and RODA implementing the necessary functionality based on this reference
implementation in order to demonstrate the adaptability of Fedora-based repositories and give
credence to the reference implementation's approach. The upcoming milestones and deliverables
reflect this work.
In addition, a Technology Compatibility Kit (TCK) will also be developed to enable repository
developers to test their implementation of the Data Connector API. The TCK will consist of a HTTP
Client to test the various Data Connector endpoints, essentially mocking an implementation of a
client and testing creation, retrieval and updating of objects within the repository, in accordance
with the specification.
An example SCAPE Plan Management GUI is available [12], however this is currently only a front-end
GUI with no connection to the DOR. An appropriate user interface (GUI or otherwise) is required to
manage Preservation Plan executions via the Plan Management API.
A reference Loader Application will be developed as a means to load digital objects into a DOR. This
will make use of the Data Connector API.

30

Table 5: Upcoming Digital Object Repository Milestones/Deliverables

Milestone/Deliverable Description Due
MS42 Loader Application Reference Implementation Deployed on Shared

TestBed
M24

MS43 Preservation-Aware Content Models Reference Implementation M30
MS44 Reference Implementation with Interface to Executable Workflows M36
D8.1 Recommendations for Preservation-aware Content Models M36
D8.2 Reference implementation of DOR with interfaces to preservation

components, workflows, and execution
M42

31

7 Execution Platform

7.1 Introduction
The SCAPE Execution Platform provides the necessary infrastructure to execute preservation plans
and store appropriate digital objects in a scalable manner so as to aid execution. The goal is to
enhance the scalability of storage capacity and computational throughput based on the use of
clusters of computational nodes, rather than single machines. These clusters, with appropriate
control and workflows, will enable fast and efficient parallel processing of large numbers of digital
objects by enabling tools, for example file identification tools, to execute on multiple digital objects
at the same time.
An alternative execution platform service is also being utilised within SCAPE and is based on the
Microsoft Azure platform [18]. In essence, this provides a similar processing concept to the SCAPE
Hadoop based Execution System, whereby multiple computational nodes are utilised to increase
computational throughput through parallelisation. Azure provides the ability to reliably (replicated
across three computers in the Azure data centre) store data close to these computational nodes,
along with the ability to define and manage applications that process this data.
The Azure platform is currently only being used to investigate the requirements for cloud‐based
architectures to support scalable migration of document formats.

7.2 Functional Overview
To achieve this aim, the SCAPE Execution Platform provides the environment for executing and
controlling execution of parallel programs on a large amount of data in a scalable manner. As such, it:

• Executes and monitors the execution of parallel programs across a cluster of computational
nodes.

• Is capable of distributing data storage across this cluster of nodes so as to reduce the effect
of network traffic on computation time.

• Supports the coordinated and parallel execution of existing preservation tools and workflows
(albeit with appropriate adaptations/compilation).

• Generates parallel programs from simple SCAPE Components that are executable on the
platform.

• Stores Parallel Preservation Components (parallel programs) ready for execution
• Enables software agents and human operators to execute Preservation Plans constructed of

Parallel Preservation Components.
• Uploads publishable results from workflows and experiments to the SCAPE Data Publication

Platform.

7.3 Technical Overview
As can be seen in Figure 2, the Execution Platform consists of four main sub-components: Parallel
Preservation Components, the Parallel Execution System, a Taverna Engine and the Job Execution
Service.
Parallel Preservation Components are an optimisation of workflows for execution on the Parallel
Execution System. They form the building blocks of Preservation Plans. The Parallel Execution
System is responsible for execution of Parallel Preservation Components in a parallel manner.
Orchestration of the execution of these parallel components may be performed by a Taverna

32

Workflow executed on a Taverna Engine. The Job Execution Service is responsible for enabling
initiation and monitoring of Preservation Plan workflows.
Sections 7.4 to 7.7 describe each of these sub-components in further detail.

7.4 Parallel Preservation Components

7.4.1 Functional Overview
A Parallel Preservation Component (PPC) is a parallel program implementation of a SCAPE
Component. It provides a program specifically able to be executed on the SCAPE Execution Platform.
The underlying SCAPE Component is a Taverna Workflow that wraps and controls some tool
invocation or preservation action. These components can be built up to define more complex
workflows or components (and ultimately a workflow as part of a Preservation Plan). The SCAPE
Components (Taverna Workflows) are not optimised for execution on the SCAPE Parallel Execution
System however, and as such, need to be generated and stored as appropriate parallel programs.
The Parallel Preservation Components module provides the ability to compile such components to
parallel programs (using the “TavernaToHadoop Compiler”), as well as the ability to store these
components (in the “PPC Store” – see Figure 2) ready for execution.

7.4.2 Technical Overview
SCAPE Components are XML Taverna workflows that wrap tool invocations or other preservation
actions, for example a SCAPE Component workflow may wrap invocation of the Apache Tika™ file
identification and parsing tool. These are stored in the SCAPE Component Catalogue for searching
and inclusion in larger workflows, however to execute with greater efficiency on the SCAPE Parallel
Execution System, these should be compiled to a suitable parallel program, i.e., a Hadoop
MapReduce job.
Such parallel programs can be hand-written, however the TavernaToHadoop Compiler provides a
means to compile Taverna Workflows to MapReduce jobs. This Java based system uses templates per
Taverna activity to convert a workflow into MapReduce Java code. The TavernaToHadoop code is
available from GitHub [SW5]. It is in the early stages of development and so is currently only capable
of converting simple workflows consisting of single input and output ports surrounding a Beanshell
activity.
The platform administrator is responsible for deploying such Parallel Preservation Components to the
platform, using an appropriate Hadoop Upload Interface, along with any tools (e.g. Apache Tika™)
they depend upon. A simple registry will be maintained to indicate which components are supported
by the Execution Platform.

7.5 Parallel Execution System

7.5.1 Functional Overview
The Parallel Execution System sub-component is responsible for providing the infrastructure needed
for performing data-intensive computations, and more specifically for the execution of Parallel
Preservation Components. It makes use of multiple nodes for storing and processing data in order to
increase the computational throughput, whilst maintaining coordination over the tasks to be
completed. These connected nodes are known as a cluster.

33

The output from executing Parallel Preservation Components may be stored on the Parallel
Execution System internal storage, transferred back to the Digital Object Repository, or, in the case
of publishable results from reproducible experiments, added to the SCAPE Data Publication Platform.

7.5.2 Technical Overview
The SCAPE Parallel Execution System is essentially Apache Hadoop with its associated Apache
Hadoop Distributed File System (HDFS), which together provide flexible, scalable and reliable parallel
processing and storage. in particular, this combination enables a close proximity between the data
and processing nodes, reducing transport overhead and thereby enabling high computational
throughput.

7.5.2.1 Apache Hadoop
Apache Hadoop primarily consists of two main sub-projects: MapReduce and the Hadoop Distributed
File System (HDFS). MapReduce provides a parallel-processing mechanism that allows Hadoop to
process large data sets in a scalable manner. It has components to manage MapReduce jobs, aiming
to ensure that computation occurs on the same node that data is stored, or failing that, on as close a
node as possible to minimise network latency issues. Data storage is managed by HDFS, a Java based,
distributed file system that provides reliable data storage across commodity hardware. Importantly,
it stores data on the same nodes that perform the computation, thereby boosting performance.

7.5.2.2 MapReduce
MapReduce is a framework for parallel processing of large datasets across a large number of
computers, or nodes. It is divided into two steps: the Map step is where the input dataset is divided
and shared out amongst worker nodes, where each worker node computes an answer to part of the
problem; the Reduce step then collects and combines all the partial-answers into one.
Further details about MapReduce can be found in a MapReduce tutorial [11].

7.5.2.3 Hadoop Distributed File System (HDFS)
HDFS is a distributed and scalable file system designed to run on a cluster of machines. A cluster
typically comprises of a Namenode server, that manages the cluster's file system and access to the
files therein, and a number of Datanodes (typically one per node), that manage the storage on each
node.
Files are split into one or more blocks, where each block is usually a multiple of 64MB, and stored
across multiple datanodes. Replication of individual blocks across multiple nodes achieves reliability
of the data.
The same nodes are also used for computation in the MapReduce cluster, and because of the close
connectivity between these layers, MapReduce jobs can often be scheduled to execute on the same
nodes as the actual data, thereby reducing the amount of network data traffic and improving
performance.

7.5.2.4 Hadoop Version used within SCAPE
SCAPE, in particular the Central Instances (See Chapter 7.11.1), currently use the patched distribution
of Apache Hadoop provided by Cloudera [53]. Specifically, the CDH3 update 2. The Cloudera
distribution is used as this is kept up to date with patches solving various bugs and
security/performance improvements that are available before a major Apache release. Furthermore,
they provide good documentation.

34

CDH3 update 2 provides:

• Hadoop version 0.20.2
• HBase version 0.90.4
• Zookeeper version 3.3.3
• Hoop

7.5.2.5 Hadoop/Taverna Workflow Integration
Hadoop is designed to operate on large data files rather than many small files, leading to questions
over its performance ability when processing large SCAPE datasets. A number of experiments have
been performed [20],[21] using Hadoop to try to ascertain the effects of file size versus number of
files on Hadoop performance. One study [20] looked at file identification performance of files
contained within ARC archive files, comparing the ARC file size versus the number of ARC files, but
also looking at the performance impact from executing tools via a Java API or via the command line
(through direct tool execution or via a JAR file). The results indicate that: a) increased data file size
offers improved processing performance compared with smaller, more numerous files; and b)
MapReduce jobs using a tool's Java API provides significantly better performance than invoking a
command line tool (either a program or a JAR file). This is likely due to the start-up costs incurred
when initiating an external tool, for example, the cost from starting a JVM to execute a JAR. Where
possible, tool development should focus on creating Components that utilise tool APIs for execution.
This study is complemented by [21] which investigates the best approach to apply workflows to the
Hadoop execution platform. Two possibilities present themselves: i) use Taverna as a scheduler and
execute Taverna activities (sub-components of a workflow) compiled as MapReduce applications on
the Hadoop cluster; or ii) use Hadoop as a scheduler to run a “driver” workflow, compiled for the
platform and comprised of multiple MapReduce programs, on the cluster. There are some
advantages and disadvantages to both approaches, such as whether it is necessary to pass HDFS file
references between Hadoop and Taverna or the level of integration with Taverna; performance wise
however, this investigation suggests using Hadoop as a scheduler and running entire, compiled
workflows is significantly faster (despite the need to create an initial sequence file for processing)
than using Taverna as the scheduler, and relates back to the fact that Hadoop is designed to work on
large input files (e.g. the sequence file) than many small files (see [21] for further details). Under this
approach, Taverna Workflows do need to be compiled as MapReduce programs, either through
manual creation or through automatic workflow compilation using the TavernaToHadoop compiler.
As indicated in Chapter 7.4 however, the TavernaToHadoop compiler is currently in its infancy, and
so both scheduling approaches are supported by the Execution Platform.

7.6 Taverna Engine

7.6.1 Functional Overview
The Taverna Engine provides a means to run Taverna workflows which orchestrate MapReduce
applications for execution on the SCAPE Parallel Execution System (i.e. Hadoop).
It should be noted that this use is distinct from running a Taverna Engine on each node of a cluster
(so as to enable a MapReduce job to invoke a Taverna Workflow); in this latter case, the Taverna
Engine should be considered as a SCAPE Component and the Taverna Engine packaged and deployed
as in Chapter 5.8.

35

7.6.2 Technical Overview
The Taverna Engine will run on a local machine or a server close to the Parallel Execution System (the
Hadoop cluster). Taverna provides a Command Line Tool for running workflows from the command
line [54], or a Web application Archive (WAR) for setting up a Taverna Server to remotely execute
workflows [55].
Within a workflow a Hadoop job can be initiated through a Taverna Tool service, which specifies the
Hadoop execution command line. A good example is the Hadoop OCR parser workflow created to
demonstrate the ability to call Hadoop jobs from Taverna workflows [56]. This example workflow
also highlights the use of SequenceFiles in order to help alleviate Hadoop’s “Small File Problem” [57].

7.7 Job Execution Service

7.7.1 Functional Overview
Execution of the Preservation Plan workflows (and therefore their associated Parallel Preservation
Components) is initiated and managed by clients through the Job Execution Service. Specifically, the
Job Execution Service understands SCAPE concepts such as Preservation Components, Data
Connector API URLs, and (potentially) the SCAPE Data Publication Platform. As part of its
functionality, the Job Execution Service will not try to resolve the data to be operated on however,
instead it would merely generate an appropriate input file understandable by a Parallel Preservation
Component, based on the input URI provided to it from the DOR (see Chapter 1); the user is
responsible for ensuring that the data, i.e. digital objects, were accessible by the Execution Platform.

7.7.2 Technical Overview
The Job Execution Service presents an external RESTful interface, the Job Execution Service API (see
Chapter 7.9.1), which is used by a client (i.e. a Digital Object Repository) to initiate and monitor the
execution of Preservation Plan workflows.
Internally, the Job Execution Service will need to be aware of which Parallel Preservation
Components it has stored and therefore can execute. Depending on the nature of the workflow
orchestration (either Hadoop or Taverna scheduling), the Service will either invoke a “driver”
workflow program (appropriately compiled for Hadoop) directly on the Parallel Execution System, or
it will invoke a Taverna workflow on the Taverna Engine.
In terms of Job Execution Service implementation it is unclear (at present) how much will be
provided by Hadoop. The latest release of Hadoop MapReduce (called YARN) provides support for
service-based Job submission and Resource Management which could possibly be used; this is
currently being investigated for usefulness and, if useful, to what extent it would require extending.

7.8 Microsoft Azure
An alternative platform is also being utilised within SCAPE, and is worth describing here as an
example of an alternative execution platform.
Windows Azure is a flexible cloud computing platform (Platform as a Service) that is used to build,
host and scale applications across a global network of Microsoft-managed datacentres. It is possible
to build applications using any language, tool or framework with features and services being exposed
via open REST protocols. Azure provides a robust messaging system that allows for existing IT
infrastructures to be integrated with applications running within the Azure environment, enabling
the creation of scalable distributed applications and hybrid solutions that run across both cloud and
on-premise environments.

36

Azure allows for applications to be scaled up or down as required, with resource usage management
available in real time. Application code can be reliably hosted and scaled out, either vertically or
horizontally, within compute roles. Data storage is available via relational SQL databases, NoSQL
table stores or unstructured Blob stores, with the option to use Hadoop and business intelligence
services to data-mine it. Further details about Azure can be found in [18].

7.8.1 Microsoft Azure within SCAPE
Within SCAPE, Windows Azure is used as an alternative SCAPE platform, primarily for the
investigation of requirements necessary for cloud‐based architectures to support scalable migration
of document formats. SCAPE Preservation Actions are run within Azure Worker Roles with
communication via internal endpoints. A Worker Role can be thought of as a process within an OS
which is managed by Windows Azure, i.e. updating, spawning, etc. As the name suggests these are
typically used for background processing of data. In addition to these Preservation Actions, Word
Automation Services, which provide “server-side conversion of documents into formats that are
supported by the Microsoft Word client application” [58], are run within Virtual Machine (VM) Roles
to provide efficient batch processing of Word format related conversions. VM Roles can be
considered more like dedicated instances of an OS that a user needs to manage and maintain
themselves.
Further details about the use of Microsoft Azure within SCAPE are still to be defined.

7.9 Required Interfaces
The Execution Platform must implement the Job Execution Service API.

7.9.1 Job Execution Service API
The Job Execution Service API provides a REST interface for executing and monitoring Preservation
Plan workflows on the Parallel Execution System. The Digital Object Repository acts as a client to this
service, and is responsible for initiating execution of a Preservation Plan against the data that it
manages. To help reduce the effects of network latency this data should reside on the Parallel
Execution System's Distributed Storage network prior to execution, however it is the user’s
responsibility for ensuring that this is the case. Such data transfer (from DOR to Distributed Storage)
may not be practical or worthwhile however, and so the SCAPE Execution Platform enables data to
be accessed directly from a repository.
A Job Execution Service can be used by multiple clients enabling one platform to provide execution
services for multiple Digital Object Repositories.
The API is yet to be defined and documented, with Milestone 32 and Deliverable 5.2 providing focus
for this work.

7.10 Packaging and Deploying
No specific deployment or infrastructure is prescribed by SCAPE, and indeed the intention is for the
platform to be versatile enough to suit individual institution needs. The system may be hosted using
private or institutionally shared hardware, by an external data centre, or it may be deployed on an
IaaS infrastructure through virtualisation.

7.10.1 Platform Releases
Platform Concept Release software was released in the summer 2012 consisting of the Central
Instance platforms and a MapReduce tool wrapper enabling a user to easily execute command line

37

applications as MapReduce jobs. The software is currently available from the SCAPE GitHub
repository [SW6].
This tool is used with a Hadoop installation (for example, Hadoop can be installed on a PC using a
virtual machine such as VirtualBox running Ubuntu) and can execute command line applications such
as the Unix File command or FITS file identification as a MapReduce job. The command to be
executed is specified in a toolspec file (and passed in as an argument when executing the
MapReduce job).
The first platform release is due in M24.

7.11 Platform Instances
There are two types of platform instance currently perceived within SCAPE: Central Instances; and
Local Instances.

7.11.1 Central Instances
Central Instances are designed to provide SCAPE participants with pre-configured infrastructure upon
which to experiment with platform software, to test and benchmark tools, workflows and Testbed
scenarios, as well as to provide a platform for public demonstrations. Two instances are currently
available, one from AIT and the other from IMF.
The AIT instance initially comprises a cluster of 10 virtual nodes (total 10 CPU cores) with an
aggregated HDFS capacity of about 4TB (maximum 400GB per node). The platform is running Apache
Hadoop (0.20.2-cdh3u2). A Fedora Commons-based repository is being added. Further details about
how to connect to this cluster are described in [9].
The IMF instance consists of three dual-core AMD 1.6GHz (total 6 CPU cores), low consumption
nodes, each with 8GB RAM and 15TB storage (5x 3TB HDDs). Details about how to connect and use
this cluster are described in [10].

7.11.2 Local Instances
Local Instances are platform instances setup and maintained by an institution primarily to evaluate
their own data sets. This typically occurs when an institution has licensing restrictions on the data
preventing it from being uploaded to a public repository. By implementing a platform instance,
institutions will be able to validate SCAPE's component-oriented architecture and the ability to
deploy the SCAPE platform across various hardware and software platforms (e.g. using DOR's other
than the SCAPE reference implementations).
Such instances may or may not be available to other SCAPE members.

7.12 Roadmap
The Execution Platform component forms a large and important section of work. A previous
milestone has delivered an initial platform concept release, consisting of the Central Instance
platforms and a MapReduce tool wrapper software. A first platform release is due in M24 followed
by D4.1 deliverable providing details on the design of the Execution Platform including its main
components, layering and interactions.

38

Table 6: Upcoming Execution Platform Milestones/Deliverables

Milestone/Deliverable Description Due
MS27 First Platform Release M24
D4.1 Architecture Design M26
D4.2 Final Release M36

Of concern to the Execution Platform is the means to execute workflows with high performance in
order to process the large datasets exposed by SCAPE partners. The approach taken within SCAPE
(based on experimental evidence) is to compile workflows to Parallel Preservation Components for
execution on the Hadoop based Parallel Execution System, requiring the need for a Taverna-to-
Hadoop compiler. An initial version of this is due M20 which will then continue to be developed.
The Parallel Preservation sub-component will need to integrate with the SCAPE Component
Catalogue, so it is imperative that an appropriate Component Lookup API is defined in a timely
fashion.

Table 7: Upcoming Parallel Preservation Component Milestones/Deliverables

Milestone/Deliverable Description Due
MS34 Initial Translator for Taverna Workflows into PPL Algebra M20
MS35 Executing PPL on Hadoop M21
MS36 Enhanced compiler and optimiser for Taverna Workflows M30
MS37 Final evaluation of parallelisation approaches for preservation M38
D6.1 Report on the Feasibility of Parallelising Preservation Processes M26
D6.2 Demonstrator and Report on Workflow Compilation and Parallel

Execution
M34

D6.3 Optimisation of preservation processes M38

The Execution Platform component is responsible for providing an interface for initiating execution of
Preservation Plans and monitoring their progress. The Job Execution Service API necessary for this is
yet to be defined, although a prototype is due in M24.

Table 8: Upcoming Job Execution Service Component Milestones/Deliverables

Milestone/Deliverable Description Due
MS32 Job Execution Service Prototype M24
D5.2 Job Submission and Language Interface M28

Finally, at the time of writing, details of how Microsoft Azure will integrate within SCAPE are
currently unclear.

39

8 SCAPE Data Publication Platform

8.1 Functional Overview
The SCAPE Data Publication Platform provides a scalable means to publish linked-data results from
experiments and workflows whilst recording provenance and versioning information about the
results, e.g. who published the results, when were they published, what tools were used. Providing
this additional metadata establishes trust in the data, and provides access to historical information
enabling decision processes based on this data to be reviewed.
This repository and publishing point for SCAPE experimental results allows them to be historically
referenced. As an example, consider a workflow executing the DROID file identification tool over a
sample file set. When executed with particular versions of DROID, or with different signature file,
DROID may incorrectly identify specific file formats (e.g. Microsoft Word docx); as tool and signature
files development iterates, inaccuracies will be corrected (although new ones may be introduced).
The file format identification coverage of any specific version of the software, or signature file is
therefore hard to ascertain without referencing experimental results.
Another example of experimental results for publication are comparable metrics for digital
preservation tools or workflows. These metrics could be performance based, e.g. tool X takes two
hours to convert data set Y to PDF, while tool Z took four hours, or quality based, e.g. tool X lost the
headers and footers from the document pages, while tool Y retained them. As the SCAPE
Preservation Component workpackages and TestBeds continue to develop new tools and workflows,
they aim to produce just this type of data
The SCAPE Data Publication Platform aims to store experimental results with additional temporal
information making it possible to capture and publish changing tool behaviour in a form where the
associated risks can be discovered and reported by the Automated Watch component. Data could
either be pushed from the Publication Platform to the Automated Watch Knowledge Base via the
Watch Push API, or a Watch Source Adaptor for the experimental data could be developed.

8.1.1 Why Linked Data?
Automating the Watch component as much as possible, in particular the access and retrieval of
Source information, would greatly improve scalability (and reliability) of this component. Therefore,
in terms of accessing experimental results data, such information ideally needs to be in a self-
describing form capable of being consumed by other computing components (i.e. Automated
Watch). This open, identifiable data enables the generation of new knowledge through linking
multiple datasets and complex reasoning, for example P2's linking of PRONOM and DBpedia enabled
answers to questions such as "What tool can open a particular file?".
Linked data could therefore be of major benefit to the Automated Watch component, but there are
well-known challenges with using linked data, especially when concerned with digital preservation. In
particular, trust and provenance information are hard to come by; data is represented by RDF triples
which describe the relationship (predicate) between some subject and an object (value), however
there is no notion of who published this information and when. Relatedly, most data in linked
datasets represents only the current knowledge - it is hard to get historic data. To help overcome
these challenges the Linked Data Simple Storage Specification has been defined [33] and shall be
used as a convenient, scalable means to store and publish SCAPE workflow data.

40

8.1.2 The Data Publication Process
A little needs to be said about the process of publishing SCAPE experimental data. The Data
Publication Platform is not intended to store the type of temporary data that is generated while
developing and testing a tool or workflow. It's designed to provide a permanent home for significant
experimental data that is of value to others in the digital preservation field, e.g. preservation
planners, or tool developers. The experimental results published should be the results of
reproducible digital preservation experiments performed on open data sets. The first part of the
process is the gathering of experimental data, the form of the data is not important as long as it is
machine interpretable, i.e. CSV, XML, JSON, etc. are all suitable. It is important that the experiment is
performed on a data set that can be openly shared, for example the GovDocs corpus. Experiments
performed on private data sets are not reproducible and the results will not be considered for
publication.
The data set and results can now be considered for publication. Details of the data set, and where it
can be obtained will be published . Specific loaders will have to be developed to convert the data
into a form suitable for loading into the LDS3 (see below) store.

8.2 Technical Overview

8.2.1 Linked Data Simple Storage Specification
Building on the P2-Registry [34], the Linked Data Simple Storage Specification (LDS3) [33] provides a
system for automating the process of publishing data, whilst helping to maintain trust and versioning
information. It does this by extending the triple based RDF model to a quad model, known as a
named graph, utilising the fourth dimension to convey facts about the author, publisher, publication
time, etc. This is enforced by LDS3, which automatically annotates hosted data with publisher and
publication time alleviating the user of this task. Resources (e.g. people, file formats, etc.) cannot be
directly created, updated or deleted, and instead have to described in a published document, i.e. a
named graph.
Named graphs are versioned through a combination of GUID and time stamp in the URI scheme used
to reference data publications. In this manner, both specific time stamped versions of a publication
can be retrieved from storage, as well as the latest version (no time stamp specified).
LDS3 provides a HTTP CRUD (Create, Retrieve, Update, Delete) based interface. Data is HTTP POSTed
to the server, returning the location of the created resource. An additional (edit-) IRI is also returned
that is used to update or delete the document; this, coupled with the fact that a user can only
manipulate data through published documents, means that such amendments are restricted to only
that data which a specific user added. All HTTP REST requests must be signed as per the approach
employed by Amazon's Simple Storage Service (S3) [35]. This signs only the request portion of a
transaction meaning there is no performance degradation as only uni-direction communication is
required from client to server.
The full specification is available at [33].

8.2.2 Reference Implementation
A reference implementation of the LDS3 specification has been developed, utilising existing libraries
where possible. The OAuth2 module [39] is used for users to register and obtain authentication key-
pairs used in authenticating requests. Document annotation is performed by the Graphite library
[36]. The quad store, 4store [37], is used to store the quads, enabling their indexing and querying. A
patched version of the Puelia-PHP application [25] (which is a PHP implementation of the Linked-

41

Data API [38]) is used to handle incoming requests in accordance with a dataset configuration file,
which details a URI pattern to match and a corresponding SPARQL query to execute; the patch
enables retrieval of named graphs from the document URL, a dated URI or an edit-IRI.

8.2.2.1 Linking With Scape
The LDS3 specification [33] imposes some restrictions on clients, such as that they must be able to
understand the "Location" HTTP headers, suggesting that clients require some LDS3 specific logic, and
therefore a LDS3 client module will be required on the Platform to publish data. Furthermore, whilst
the interface for creating and updating publications within the LDS3 server can be done through HTTP
requests (that conform to the specification), the Automated Watch component expects Sources to
implement a Push or Pull interface, which is likely to differ from the LDS3 REST based API. A simple
adapter may be required to interface between the Automated Watch component and the SCAPE
Data Publication Platform.

8.3 Roadmap
A reference implementation of the LDS3 specification has been developed. Appropriate connection
with the Automated Watch component needs to be considered, potentially requiring a simple
adapter to provide the interface.

Table 9: Upcoming SCAPE Data Publication Platform Milestones

Milestone/Deliverable Description Due
MS89 Result Evaluation Framework (REF) containing Identification Data M25

42

9 Conclusion
The SCAPE project is developing scalable tools, services and infrastructure for the efficient planning
and execution of preservation strategies for large-scale, heterogeneous collections of complex digital
objects, in an effort to enhance the digital preservation state-of-the-art.
To achieve these advances SCAPE are developing a platform tailored towards the automated
planning of preservation plans, monitoring of knowledge impacting these plans, and the scalable
execution of the Preservation Plan workflows on large content collections. The majority of
development work is broadly divided into a number of key sub-components, Automated Watch,
Automated Planning, Preservation Components, the Execution Platform and the Digital Object
Repository.
This report has provided a detailed overview of the functional components that comprise the
architecture of the SCAPE project, in particular describing the interfaces required between each of
these functional entities. Specific details about the interface APIs are not discussed, rather the
relevant SCAPE API documents are referenced instead (where APIs have been defined). Roadmaps
are also provided to give an indication of the upcoming work relevant to each component.

43

10 References

[1] "Plan Management API", F. Asseg, M. Hahn, 2012, SCAPE.
[2] “Search/Retrieve via URL”, http://www.loc.gov/standards/sru/
[3] “SRU Contextual Query language”, http://www.loc.gov/standards/sru/specs/cql.html
[4] "Connector API", F. Asseg, M. Hahn, 2012, SCAPE.
[5] "Report API Specification", R. Castro, M. Ferreira, L. Faria, F. Asseg, P. Petrov, 2012, SCAPE.
[6] http://www.openarchives.org/OAI/openarchivesprotocol.html
[7] http://www.myexperiment.org
[8] "Preservation Components Profile", SCAPE wiki, v. 25
[9] SCAEPE logging into the AIT Cluster.
[10] “Deployment infrastructure (hosting, storage, security)”, S. Barton, R. Schmidt, 2012, SCAPE,
[11] “MapReduce Tutorial”,

http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
[12] "Plan Management Mock-Up", SCAPE wiki, v. 4.
[13] "SCAPE - Loader Application", Y. Brama, R. Castro, F. Asseg, M. Hahn, 2012, SCAPE.
[14] "LSDR Executable Workflows for Experimental Execution", D16.1, C. Wilson, P. May, S.

Schlarb, B. Jurik
[15] http://wiki.myexperiment.org/index.php/Developer:API
[16] http://wiki.myexperiment.org/index.php/Developer:WorkflowsResource#Create_workflow
[17] “Windows Azure”, http://www.windowsazure.com/en-us/develop/overview/
[18] http://www.its.tuwien.ac.at/dp/plato/schemas/plato-3.0.1.xsd
[19] ARG.GZ & Tika Hadoop Experiment, M. Raditsch
[20] “Evaluation of String Operations in Taverna and Hadoop”, M. Schenck, 2012, v1.1.
[21] Requirements documents for provenance component, (SCAPE Checkpoint).
[22] http://www.taverna.org.uk/
[23] http://code.google.com/p/puelia-php/
[24] “Guidelines for deploying preservation tools and environments”, D5.1, R. Schmidt, D.

Tarrant, R. Castro, M. Ferreira, H. Silva, 2012,
[25] “Plato”, http://www.ifs.tuwien.ac.at/dp/plato/intro.html
[26] ISO 14721:2003 “Space data and information transfer systems -- Open archival information

system -- Reference model”, http://www.iso.org/iso/catalogue_detail.htm?csnumber=24683
(this has been superseded by the 2012 model)

[27] ISO 14721:2012 “Space data and information transfer systems -- Open archival information
system -- Reference model”,
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=572
84

[28] “SCAPE Digital Object Model”, M. Hahn, F. Asseg, N. Shirwinter, R. Castro,
[29] http://www.loc.gov/standards/mets/
[30] http://www.loc.gov/standards/premis/
[31] “LDS3: Linked Data Simple Storage Specification”, http://www.lds3.org/Specification
[32] “Preserv2 – File Format Registry”, http://p2-registry.ecs.soton.ac.uk/
[33] “Amazon Simple Storage Solution”, http://aws.amazon.com/s3/
[34] “Graphite PHP Linked Data Library”, http://graphite.ecs.soton.ac.uk/
[35] http://4store.org/
[36] “Linked Data API”, http://code.google.com/p/linked-data-api/

http://www.loc.gov/standards/sru/
http://www.loc.gov/standards/sru/specs/cql.html
http://www.openarchives.org/OAI/openarchivesprotocol.html
http://www.myexperiment.org/
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://wiki.myexperiment.org/index.php/Developer:API
http://wiki.myexperiment.org/index.php/Developer:WorkflowsResource#Create_workflow
http://www.windowsazure.com/en-us/develop/overview/
http://www.its.tuwien.ac.at/dp/plato/schemas/plato-3.0.1.xsd
https://portal.ait.ac.at/sites/Scape/Shared%20Documents/Sub-Projects/Testbeds/TB.WP.1%20Web%20Content%20Testbed/work/2012.06%20-%20ARG.GZ-TIKA%20Hadoop%20experiment.doc
http://wiki.opf-labs.org/display/SP/PT.WP.4+Task+2+CP046+Requirements+documents+for+provenance+component
http://www.taverna.org.uk/
http://code.google.com/p/puelia-php/
http://www.ifs.tuwien.ac.at/dp/plato/intro.html
http://www.iso.org/iso/catalogue_detail.htm?csnumber=24683
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57284
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=57284
http://www.loc.gov/standards/mets/
http://www.loc.gov/standards/premis/
http://www.lds3.org/Specification
http://p2-registry.ecs.soton.ac.uk/
http://aws.amazon.com/s3/
http://graphite.ecs.soton.ac.uk/
http://4store.org/
http://code.google.com/p/linked-data-api/

44

[37] “The oauth 2.0 authorization framework”, D. Recordon, D. Hardt, IETF, 2011.
[38] Apache Tika™, http://tika.apache.org/
[39] D12.1 “Identifcation of Triggers and Preservation Watch Component Architecture,

Subcomponents and Data Model. K Durutec, L. Faria, P. Petrov, C. Becker 2012 SCAPE
[40] “File Information Tool Set (FITS)”, http://code.google.com/p/fits/
[41] “MongoDB”, http://www.mongodb.org/
[42] “Apache Jena”, http://jena.apache.org/
[43] “Jersey”, http://jersey.java.net/
[44] “GlassFish”, http://glassfish.java.net/
[45] “Systematic planning for digital preservation: Evaluating potential strategies and building

preservation plans”, C. Becker, H. Kulovits, M. Guttenbrunner, S. Strodl, A. Rauber, H.
Hofman, http://publik.tuwien.ac.at/files/PubDat_180752.pdf

[46] “Plato: A Service Oriented Decision Support System for Preservation Planning”, C. Becker, H.
Hofman, http://publik.tuwien.ac.at/files/PubDat_170832.pdf

[47] “OWL Working Group”, http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
[48] “JBoss”, http://www.jboss.org/jbossas
[49] “Apache Hadoop”, http://hadoop.apache.org/
[50] “Cloudera Distrbution including Apache Hadoop”, http://www.cloudera.com/hadoop/
[51] “Taverna Command Line Tool”, http://www.taverna.org.uk/download/command-line-tool/
[52] “Taverna Server”, http://www.taverna.org.uk/download/server/
[53] “Hadoop hOCR parser workflows”, http://www.myexperiment.org/workflows/3069.html
[54] “Hadoop’s Small File Problem”, http://www.cloudera.com/blog/2009/02/the-small-files-

problem/
[55] “Word Automation Services”, http://msdn.microsoft.com/en-us/library/ee558830.aspx
[56] “Technical Implementation Guidelines”, D2.1, A. Jackson, 2011
[57] SCAPE Software References

The following links provide references to software modules and components developed in SCAPE.
[SW1] https://github.com/openplanets/scout/tree/integration/adaptors/pronom-adaptor
[SW2] https://github.com/openplanets/scout/tree/integration/adaptors/c3po-adaptor
[SW3] https://github.com/openplanets/scout
[SW4] https://github.com/openplanets/policies
[SW5] https://github.com/schenck/taverna-to-hadoop
[SW6] https://github.com/downloads/openplanets/scape/pt-mapred-demo.tar.gz
[SW7] https://github.com/openplanets/scape-tool-framework

http://tika.apache.org/
http://code.google.com/p/fits/
http://www.mongodb.org/
http://jena.apache.org/
http://jersey.java.net/
http://glassfish.java.net/
http://publik.tuwien.ac.at/files/PubDat_180752.pdf
http://publik.tuwien.ac.at/files/PubDat_170832.pdf
http://www.w3.org/2007/OWL/wiki/OWL_Working_Group
http://www.jboss.org/jbossas
http://hadoop.apache.org/
http://www.cloudera.com/hadoop/
http://www.taverna.org.uk/download/command-line-tool/
http://www.taverna.org.uk/download/server/
http://www.myexperiment.org/workflows/3069.html
http://www.cloudera.com/blog/2009/02/the-small-files-problem/
http://www.cloudera.com/blog/2009/02/the-small-files-problem/
http://msdn.microsoft.com/en-us/library/ee558830.aspx
https://github.com/openplanets/scout/tree/integration/adaptors/pronom-adap
https://github.com/openplanets/scout/tree/integration/adaptors/c3po-adap
https://github.com/openplanets/s
https://github.com/openplanets/poli
https://github.com/schenck/taverna-to-hadoop
https://github.com/downloads/openplanets/scape/pt-mapred-demo.tar.gz
https://github.com/openplanets/scape-tool-framework

